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PREFACE

This little book, like so0 many of its kind, had its roots in a course of
leotures. T gave the lectures, by request, fo an audience consisting mainly
of graduates in physics, soil mechanies and the various branches of civil,
mechanical and clestrical engineering. The listeners had begun to.fifd,
that progress in their rescarches and further studies was being impeded
by their inability to handle Bessel functions; it was my task to rerdedy
this defect in their equipment as best T could. O

Somewhat fo my surprise the audience turnod up in ‘anéidcmh]e
strength; o my even greater surprise a high percentage staged the course
without hope of ulterior zeward beyond the acquirement of wisdom. I
was flattered into believing with venial weakness that'l might have done
worse; and mayhe 1 lent all too readily  a crodent aa»™ to the auggestion
that the lectures be put into hook form. Howeyéy fiow that the step has
been taken, I am under a moral obligation ‘g@}rﬁéwer two questions.

The book is definitely mathematical anfhi¢ addressed to techniciana.
This immediately poses the question, what“should be the mathematical
equipment of the man who hopes to henclit by reading it? The lectures
were designed to fall within the cireleso! ideas of those who had taken the
mathematical coursc that nsuallygobs with a degrec course in physics or
engineering. More specifically, sfovuse was to be made of contour integration
or of the complex variablpiir;\t-hc analytic sense. On the other hand, T
assumed & kuowledge &fotdinary differential equations with constant
coetiicients, such as ogeur In the theory of beams or of simple cireuits, I
further presumed myaudience to know that such partial differential
equations as normially arise can be solved as the product of functions of
the illdcpendcgt:\ériables and might invoive Fourier serina,

L embarkéd on the lectures with a good deal of trepidation, for reasons
which willbe patent to anyone who has ever essayed the task. The main
diffieultf3s to establish the existence and nature of the zeros of the Bessel
fllI&&“iiQ}lS. The series representation of a function is often the least infor-
mative thing about it except for purposes of eomputation, and I had
little hesitation in relegating that to a subordinate place in the scheme of
exposition. The recurrence formulse for any function containing a para-
meter are certain to play an important part in ifs applications; but the
recurrence formul are most likely to be derived from an integral repre-
sentation of the function, and that is something which definitely has to
be considered advanced, even in the study of differential equations,

This brings me to the second of the two questions which T mentioned

previously. It is to account for the unusual lay-out of the course. After
v
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much cogitation I decided that the speeial circumstances of the fas<i:
justified the heterodoxy of making the recurrence formulz the startin
point. 1 had no reason to regret my decigion, for as painted out in the
bibliographical note, I found I had the moral support of the argute E. 13.
Wilson.

I inserted the initial chapter, treating the ancillary functions, on
pedagogical grounds. It is better to do a little preliminary spadework to
make sure that the soil is ready for sowing, rather than to interrupt onc's
discourse by parenthetic paragraphs and distracting footnotes. TheréN:
the additional defence that the Gamma funetion is in itself suffigichtly
interesting to justify the expenditure of a fow hours on mastering itSaglient.
properties. O

Coming to the main obstacle, how +o demonstrate thesekistence and
nature of the zeros of the Bessel functions, I naturally ingpaired how other
writers had approached if. Tn three current books L{ound that one cm-
ployed Bessel’s original method that a beginnenSyould hardly relish:
the sccond advocated the uninspired method ofsplotting from tabulated
values; the third went on the principle ignot ,3\;31‘ ignotius by horrowing
the wnproven asymptotic values. That rempyed all gualms I might have
had‘a_bout using the oscillation theory. (Che majority of English mathe-
maticians are indebted to the standard\freatise by G. N. Watson rather
than to the continental school, and T¥hink that if itg author had felt more
drawn to the Sturmian theory, oﬁjer writers would have adopted it. In
iny case, mathematical physica“has in recent years given the theory a
. Tehascence, and my au(_flif 0¢ "was pleased to learn that gz differential

¥

fail to recognize QiQ'it“_an %nsﬁmment admirably snited to its purpose.
The year of publication marks 5 ceutenary; . W. Bessel died at

Warrorp, F. E. RELTON,
July, 1846,
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CHAFTER 1

The Error Function
Beta and Gamma Functions

oA
11. The study of functions. O
The functions that one encounters early in one’s studlcv,\are usually
termed “ the elementary functions . They include the frigbniometrical
functions, the hyperbolic functions, the exponentiaNand logarithmic
function. Functions other than these are termed\® tramwndental
funetions ” and for the most part they fall ]Ill:i)\}ﬁe or other of two
categorics; efther they are defined by an mﬁ‘sgral or they satisfy a
differential equation. It oceasionally hdppens that a function falls
into both categories. AN
A mathematician, faced with the\ c;tudy of a new function, has
very much the same attitude that g pﬁymust or a chemist would adopt
towards a substance presented fob examination. The latter would
inquire whether the sub&,‘ran\s@ was crystalline or necessarily araor-
phous; whether it was blo and what were its solvents; what was
its densmy and thc,rma%bndut tivity, and so on. A mathematician
would inquire Whether there were any values of the variable for which
the function vanighed, or alternativ. rely became infihite; in his own
terminology, he\\%uld seel for zevos and poles, He would be interested
to know w r the function had an addition formaula, by which we
mean an eoaprt,smon for fla + &) in terms of f(¢) and f(3), the simpler
the beptcr; and proferably algcbralc Thus the trigonometrical function
smggh,as the algebraic addition formula

$in(z 4 y) = sina(l — sin®y) 4+ siny(1 — sin2a)},
Y Y ¥

which can also be written in the differential form

sin(x -+ y) = sinz &; giny -+ siny EE sin.

The mathematician would be interested to know whether the function
had maxima and minima, and in particular whether it wag agymp-

totic to some simple expression for large values of the variable, Just
1



2 APPLIETY BESSEL FUNCTIONS

as coshw is asymptotic to fe®. Finally he may decide to tabulaie the
function, though this is usually the last thing he does and many fune-
tions have been studied which nobody has yet trouhled to tabulae,
The investigation of these and other points of interest is ravely
carried out by evaluating the aforementioned integral or by sulving
the differential equation which defines the function. There are ciler
methods of approach and we must be prepared to encounter thes: in
the following pages. We ghall be concerned almost solely with they
so-cailed Bessel fanctions, of which there are several kinds; and N
ay as well be stated at the outset that the graph of a Bessel fuptiivn
- wsnally looks like the distorted sine-curve that rcpresents a {afmped
oscillation. The amplitude steadily decreases and there ig-this difirr-
ence, that the “ period ” is not quite constant, so tha.t‘jf-he function
cannot legitimately be termed periodic.  But beforewe come to tie
Bessel functions there is a certain amount of spadéwerk to be done.

. 7\
12, A useful limit, AN

.

We begin with a limit for which we, shall find almost immediate
use. If % is a positive number we havey”

(1) @™ — 0, m 50, n >0,

The ArTow notation sigm'ﬁgs'\"‘ tends to , « approaches , or “ has

the limit . The above line‘signifies that when g s positive and x tends

to zero, then the expr(?séio a4 the left also tends to zero, The result

s ojbvmusly correct, gince e fendy 4o unity and ¢* tends to zero.
Similarly we havgﬂqd not quite g0 chvious result

(2) \\ e ) g @, n>0,

Here 2 téndls to become indefinity

- y large and e~ 4, .  Woe
estal?hgh‘the truth of the statement ¢ ends to zero. We

by writing
\(3} e — E?t = ___ ot ]
¢ ltetpp
On dividin rum . ;
e g . erator and denominggor by #* the numerator hecomes

ty. The denominator becomn, imni
es .
powers followed by an jnfin: o e
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EXERCISES

i, Sketch the graph of a®¢ ¥ when « is posilive and % is (i) positivo, (ii) zero,
{iii) negalive. Prove that in (i) there ig a single maximum; but in (ii) and (iii) the
valie steadily decreages as x increascs, whilst in (iii) the initial value is infinite.

logx io
2. Frove that - ------+w =0, Also -0, 2 — o0,

3. Doeduce that as the number » tends fo become very latge, the nth rovtof N\

# fends to nnity. N
logl =~ leg2 log3 L. ¢ N
4, Prove that the serics —— 3 + T3 -+ 3 . . Iz divergent: a,nd«@ed“uce
that tho product 11, 2%, 3%, 4% . . . is infinite. A\

5. Prove that as g — w, a2 — 0, N\
i, Bketch ronghly the graph of the function {logax)/fx foruﬁwsl’swe values of
2. Prove that it has a single maximum value e,

18, The error function, Erf(x). A

The error function is one of the classybf hlnctlons defined by an
integral. Tt plays a prominent part in the theory of probability, refrac-
tiam of light, conduction of heat, and s&on. Its definition is

(1) y= Erf (37)': f "tz

The graph of the mtegran@“l} shown in fig. 1. It is symmetrical and

has & mazimuam value of\ﬁm‘ry when ¢ ig zero; it is doubly asymptotic

to the horizontal axis ghd has two inflections. The variableZis a dummy

and could equally,#ell be called # or any other symbol. The integral

ropregents the ;a{ca" included between ordinates at the origin and at

gome mria}%’ﬁistance z. Its value will be found tabulated in almost
"\

3

o\ y

Fig. 1.—Graph of function y = ¢ #"
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any work on probability and in many sets of tables. The integral can
be evaluated by expanding the exponential in an infinite sories of
ascending powers of ¢ and integrating term by term; but the vesulr is
not very informative.

It not infrequently happens that where an indefinite integral can-
not be evaluated in a succinet form, a neat result can be obtained
when the integral is definite. 'We now propose o show that the wlule
area under the curve in the first quadrant is finite and has the valge\

(2) [ ettt =14/m, O

_ ) 0 £\
This last integral is called an infinite integral on._accou.qﬁ~31f the upper
Limit; if it oxists it is regarded as the limit of the sam@ntegral, taken
between 0 and @, when a is made indefinitely lazge Hence we Ny
Wwrite '

%

a a w \/
N,=] e*f = f et
T 0
) . 'm" 3
— —1:2 & [ u.'— 2 -
N _L e d:.::’_ e ¥ dy;
N, NeBt a0,

Here N is & pure number and N, is a number dependent on a. We

mMay write im\
o 3
Vi sttty = [ errieay,

the double intqgrgl’l;eing taken over a square of side @. On converting
to pollar co-ordimates 7, § we have e —® — e~ and the area-element
dudy is glaeed by rdrdf. The limits for are 0 and 4, and the limits

for 9 azedand 17; but as the polar eo-ordinates cover only a quadrant
instead, of a square we writo

N ir .
'®) N =["["eraras | g,

Ellct"ere R 11? known as the remainder. Tt represents an addition due to

Stepajrseio Be]:weefhthe quadrant, a.nd’the Sqoare {fig. 2), and our first

St I—;}W bat the value of B ig ultimately negligible, or B — 0
@. Here s the proof. At 4Ny point within this arey, we have

] 2 2
x Y2 g2 padyt —qf
T e e < g

and sing hi o
nce the area over whick this is to be integrated ig certainly less
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than balf the square, we have B <7 {a% - Hence R -0 as ¢ -0 .
We may now let @ become infinite and rewrite a previous line as -

e @ w
Ni= f de f re Cdr = %frl:—-;—e—fz:’ =1m,
0 0 - 0

whenve ¥ = 14/7 as stated earlier.
As an example of its application, consider the following intractable-

looking integral which occcurs in the theory of heat eonduction. .
fie] =) W & \
» 28 df = g0 05
I —f e gy so that —- = -—Qﬂf et O
0 da a T g\
g \“/
v ) ' ,\‘:“ :
a A
\\o
)
w4
"\
\ 3
% ‘s’l‘
™Y
oS
{\
2\J
RN =
N r
'”'g J Fig. 2
¢
The substitutiohyry = a is equivalent to
O
N @ __dy
A\ o o
'
whengs, ™
M\ w4 d[ 0 df
Q T gy st o,
d{i‘r @ & .

The solution of this simple differential equation is [ == ¢e 2% The
arbitrary constant ¢ can be determined by putting ¢ = 0. This gives
¢ =v/7 and ] = 4/ me 29,
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EXERCISES
L. Sketok roughly the graph of y = Trf(z) for positive values of z. Ti vhisely
resembles the right half of ¥ == tanhz; at what angle does it leave the orivi, i
® . ar _ .
2 I= f & *'oon 26 di, vorify that i + 267 = 0; hence deduce ihat
0
I = iV e, N\
w Vo N\
3. By aslight change of variable, doduce that _/.; & 008 e - ‘o "‘\ .
4. Integrating No. 2 between ¢ and b, deduce thag ;:\
-~ in 24 b3 b ”.}"
f e Eln_ fdﬂf — V".‘:{E} — oo — _}‘ﬁ's
o @ 3 " 521 A0

~\
8. Use the substitution o — ¢ — @ to establish the reguld )

L p
f ety %\/1:3“*.':'\\'
[

W

e o
8. The error function ig sometiires defined das Erfo(z) — f et Dedice
Erf(2) = V7 ~ Hrfofa), o

{(The function is sometimes called the .‘f.i);c}rma-l error '’ pr probability inte-

L . . \ ":‘ 2 ¥ T
gral” and iy tabulated in the form Kws ™" f e ¥dl. This is asymptotic o
\ wty

Y vV
wnity for large valuey of # and reaghesthe value 0-99998 when 2 — 3.

AN
14, The Gamms fune 'o@.f

The Gamma fungbion is one of the class defined by an integral,
It is known thag dt;does not satisfy any differential equation with

. « AN . B
rational coefficiefs and it 15 sometimes called the Eulerian integral of
of the earliest transcendental functions that

the second kied, Tt is one
one encoutters and it ig certainly one of the most interesting,
ifn 158 positive number, e have a5 the definition

{N\" %
\mgr) | T(n) = fo " le~tds, 5 g

(n) is necessarily
mtegrand is positive through-
obviously 5 dummy,

_ £ ! en the argument, of the function
B A If 5 i3 less th r integral is of the type known as im-
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proper since the integrand then tends to infinity at the origin. If # is
less than, or equal to, zero the integral fails to converge,
We achieve a {irst result by equating » to unity. This gives

2 I'ly={ etdt=1.
@ W=/
If we integrate by parts we have
) 7
f prtgip o b gt -+ f 2 etd,
% n
On ingerting the limits we can write £\
@ w =] X
1—-1,—t — | np—t - " A
fnj[; il dt_[te . —|—j; tre~tdt, o~

N
The first term on the right has alrcady been proved t6.yanish at hoth
limits, We thus have O
.\ J

(3) al(n) = Tn + 1),

This is known as the difference equation : féz. the Gamma functlon and
1t is one of its most important propertlé& We proceed to investigate
gome of its consequences.

(i) Putting # =1 gives D(2)% lI‘( J==1. An application of
Rolle’s theorem to the two xesults P2)=1=T() indicates that
’(x) has a minimum value. ~Aetually it occurs when n = 1-4616 .
and the corresponding vaki& of I'{n} 1s (-8856 .

(ii) By repeated application when % 1s an mtegpr, e.g. n=2>5, we
get 3 :
T(G)=AT(4) = 4.30(3) = 4.5 . 2I'(2) = ¢
o
It is easily sés.u that in general we have I'(n) = (# — 1)! when » is an
integer. As a matter of history, the problem of finding a function of
& thaty s{wuld be continuous when # is positive and take the value !
whén ¥ is an integer was solved by Ruler in 1729. The Gamma function
ean accordingly be regarded as a sort of g gcnerahzcd factorial.
{iti) When # is not an integer, e.g, » = &, we can ultimately reduce
_the argument below unity. Thus T'(3) = 0% = £. iI'($). It follows
that for purposes of computation the function need only be tabulated
in the range 0 to 1. It will appear later that even this range can be
reduced.
(iv) By an uncritical use of the difference cquation we can carry
the funetion over into negative valnes of the argument. I, for example,
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we put # =1 in the relation Pln) = (n — 1)n — QJT‘(:e 2) we get
P(d) = (—2)(—5I( —3) whence I'(— 8) is defined 2s RENES lr should
be noted that the mbegral definition no longer holtls ool xince the
intepral fails to converge at the lower limit when 5 =. _. 5. S
With negative integral values we encounter a seriis ol infinities,
s

I‘(2):I.F(l)-_:1.0.1”(0):1.0.—1.]“(—-1) '
=1.0.~1.-2 1 9>

and 80 on. Tt follows that I'(—n) is infinite if n is o [JQ%E-N'i} mteger
or Zero,

N

The integral defining the Gamma function can Jre\aive various
forms by changing the dummy variable. The mostuseful of these is
the substitution ¢ — @% dt = 2 dw. We then hai’je\

(4) Tn)y=2 f w:ﬁ"‘lej”f%i
1] \ v

With the particular value n

N ) o
= § We Pedover the error funetion, whieh
leads to "

r(%’)}%‘g fo e,
Hence the important result -
) O Tl =/m
It is naw Passible to form an jdeq of the graph of the funotion,

which is indicﬁtéd. n fig, 3. In virtue of the difference equation the
vahie tends (o Infinity with increasi

e than the stationary value on the

of roots for all values of ¢, positive
: ‘ametion hag ne peg] | at nega-
tve infinity. _ real zeros except it
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as Gamse’s 11 funeet - 11 only needs to be remembered that the dif-
ference 15 one of 1 i only and that [1{n) = D{n + 1), so that for
positive integral . we have (o) <at - T 1)

. 4

0 8856

e — :
3 1
3 1
1 1
1 L
L} ]
1 : 1
i Yoo . \
: \ '. 07\
’ ' 1 W
. : E ‘..x\
H 1 v \Y
' : ' . \/
1 N b L QY
Ny
Fig. 3.—Graph of the function y = T{x)
1'5. The Beta function, <

) The Beta function is ﬁgs})f the class that is defined by a deﬁm'i':e
{nte%ra]. It 15 somet;irgc}%nnwn as the First Eulerian integral and it
involves two positive parameters which we may b
defnition i \P‘"‘ ™ v
(]) ;Q}_-pj Q) :fltp—l(l _ g)q—ld;j, 7 q =~ 0.
RS
The readey should sketch the possible types of
‘ﬂal}ls-fi'?).f?? and g; but a graph of the Beta functio poss!
sife) 1t involves three-dimensional Tepresentation. The function
représents the area between the ordinates at ¢ =0 and ¢ =1, and the
val_'ia.ble { is obviously a durmny. If gither p or g, 0T both are less t.hap
unity, the integral becomes improper at one of both lirnits; and if
2 or g, or both are negative or zero the jntegral fails bo converge. The
integral can be evaluated in finite terms if ¢ is ar integer; expansion
but the result

by the binomial theorcm permits termwise integration, _
: too closely
great importance on its

ake to be p, g. The

integrand for different
n itself is not possible

it of 1o value, Tt will appear later that the Beta Function is

allied to the (amma function to have any
0Wn account. ’
(6 150) 2
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1:6. Change of variable,
The substitution ¢ — 1 — &, dt = —dz gives

W B9 =[ e~ aptis — g, g,

8o that the function is symumetrical in its two parameters,
A more fruitful substitution is
t=gin2g, 1—3:00828, dt=2sin€cos¢9d0. N
- This gives : )
ir '\ ’
2) B(p, q) = 2f sin*~19 coge-1844 ~ Blg, p). O
] 3

4 5\

This leads to a number of reduction formuls theftohe encounters

when learning the integral caloulus. We shall retuf'h'\to those later,
A third useful substitution ist=yf(1 4y, This leads to

AN

. L] g1
Bp.gp=f T

In partievlar, if o <P <1, pi ;g”’:: 1 we have the important
result N’

oR .1
3 Bl —g¢, g2 57 -7
®) ( “’2 fn 1—}~yy singsr

This lagt integral is 5 \aygii}gno“m result, easily established by contour
integration, Unfort tely, elementary proofs are not so simple. They
can usually be fomdhin advanced works on the calculus; in particnlar,
see Bdwards, Iﬂ@t{gml Caleulus, Vol. 2, p. 61,

Emmple.-—ﬁéns‘ider the integral

O o -
QF 1= fo VeorBdh — fo cout 8 sin 549,
Herg\.ﬁé‘have 2p—1= -1 9

%

7 — 1 =L, whence P°= 1 ¢ = {. This gives

PN w4
A R e
17, Counnezion between B ang 1 funetions,
The two forms 1.4(4 ' '

Lip) =2 e ey Ty ~af” 2e-lg4* g,
A D=2/ = Yy

lead to T(p)(g) ~ 4 _£ fu eVl g g,
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On converting to polar co-ordinates # — # cos 8, y = rsin @ we can write
Bw p®
Cp)g) =4[ [ er*pawraet costo-1g sina-194p o,
4] 4

Lhe reader is left to justify the ignoration of the remainder R by the
process used when studying the error function. We now have

I =
p)[g) =2 210 5in210df X 2 eryerte-1gy
INEING)) ‘/.J cos sin f(; e’y 7 ~
Fhe firgt integral is known to be B(p, ) and the second integralig a

worm of p + ¢). Hence I{p)I'(g) = B(p, 9)T(p + g), or as it is @sﬁé]ly
written A
(' N\
(1) By, ) =20,
SRR IR
The result emphasizes the symmetry of B(p, ¢) in\ibs two parameters,
i also explains why the Beta function is of Lithle“consequence on its

nan account. If we put p g =1 the dendwninator becomes unity
=il we have, using 1-6(3), O

N/

9 I —q) = Bt g = _7_.
{2) HgT({i —g) (9 9=~ i
tu particular, if p = 1 = ¢ we have'
D) = "
A\ sinirw
which is our previous esult T(L) = 4/ .
It appears froth ¥he result
> l—p)=_" ..
\:\ P — ) sinnar

conneet-i;jrg. the Gamma functions with the circular fanctions that for
purposes of computation it is necessary to tabulate I'(n) only in the
raige/0 to 1. Thus I'() is determined from

80 that

A table in this range was calculated to twenty figures by Gauss.
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1:8. The duplication formula,

A duplication formula is one which expresses the function of a
doubled argument in terms of the function of the sigle areununi, As

- a simple illustration, the function cos 2z is expressed in terims o cogy
by the duplication formula cos2z = 2 cos?s 1.

We have by definition A
1 1
; — Lo T R i — — ptyn-I 7., £\ *
B(n, ﬂ). -—/ﬁ: FHL — gyl gy L {(z — Lo)n-Tdy \, Oy
The substitution \
2% — 1=y dg= 1dy A0
gives R4
Bin, my— _L [l —ypragy o 1 1(1_ y2)-1d,
’ 221 f ¥ ¥ = 5303 \ié; ¥ i

Si.{lﬂe the integrand ig syminetrical about, th’é:\)r}'gin. The furtlier -ub-
stitution O

. Y=t dy j—,—ft;i{“*dt
gives N

R R
B(n, M=o fm&lm;) i hz;:%__i B(n, 1).

K
In terms of Gamma fun{{{-*oﬁs this is

SEBOTm) _ pagrg,
N Ty T marg
Hence AN (n) (et 1

\E 4

0 N V- T(2n) = 9o, 4 g,

b A%fﬁfis 1o part of onr programme 44 develop the Gammag function
Qan ?vhat. is Iec.luls_lte for the tomprehension of the Bessel functions
We 1éfrain from, Pursuing the matter further; but the student to whom

the subject, is ney #ould be woll adyised g follow it a little farther in
80me work gn advanced taleulns,
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EXERCISES
I ("*'f)
1. ﬁ Foviciay Yol o PO _k”_.,

2. IrG) = %; T@ITE) = 12i0(3), 3HI (32 = ni2in(y).

k=0,

e 1T L .
3. f cos' 0 sin®30 40 = IMF@ &N
o 27
4. If w is & positive integer, 2*T(n + 1) = 1.3.5 . . . (@n — v, O3
4. Prove that f acp‘l(a — "1 = B(p, glariet, \,,\,
A 5

6. Express the produet 2.5.8 ., . (3n — 1} in terms of t}@"ééﬁnma fune-
tion and generalize the result. [Ana. 3"(n L £),T(3)] ¢

7. Prove the duplieation formula for the Gamma functiuff by integrating the
(2n — T)th power of the iduntity, sin 20 = 2&in 0 coz 0,

8. The sum of two positive numbers is unity, Calgmlété the root mean square
of their product. [Ans. 1/v/30.] AV

9. By means of the substitution ¢ = (z — blf(é: + b) prove that

[ttt — aptia— Big ). a e,
5 O

10. f%“’cOSnUdﬁ :f'}"'sinnada :‘w\":ﬁ}:‘(%n + f})
(]

o 0 S
Verify that whon » is an intcgell,’{d\d or even, these correspond to the * reduction
formulie  of the caleulus. 0 2\J
11, Tf » is & positive I}eq}-integer, prove that the sign of I{—=n) is (—7F
where r is the integer ne&tyreater than n, :
dro 8D (2mpn
12, ‘/0 \/cosx{?gfl:— RTS)E
This result ig #bpertent since it links the Glamma function with the Elliptic
functions; s@W‘hittaker and Watson, Modern Analysis, p. 524.
AN
"’\; -4



CHAPTER I1

Differential Equations N

N

2:1. The linear equation, e\

The next step in our progress towards the study of, fhé Deeso]
fimetions is to survey part of the field of ordinary linegrdifferen: . |
equations. It is presumed that the reader already hds' some sli '_:1 &
knowledge of the subject and has at least a nodding "stg:\luaintance wiihl
the standard elementary methods of solution, Theebject of the preseat
chapter, which is ainly theoretica), is to Te eéh his memory and (o
£l in what are probably a few gaps in his ggdiptnent. The justification
for its inelusion is that we shall ultimately be dealing with differentix!
equations, \ o

The general linear equation may :f;)'ez written
&) te Ry, =X,

where X and the coefficients, p, ¢, ¥, &e., are in general funetions of the
Independent varighle . { THe. order of the equation is the order of the
highest derivative Present. The equation is said to be linear as there
are no products and.powers (other than the first) of the dependent;
variable y and its Berivatives. If X be replaced by
equation is "\'\

\\ py+gy’+ry"+...=0.

This it sometimes called the auxiliary equation ; alternatively,
~the Yeduced equation *,

b is & property of the reduced linear equation that if y,, Yo Yg, &,

are solutions, so also ig Ay, -+ By, 1 Cys -+ . . . where 4,8 ., .

are arbitrary constants. The proof is sineple; for §
have .

zero, the resulting

£ ) Is a solution wo

W1+991'+Ty1"+ v =10,
Similarly P+ qyy’ + L =0

Pty +ory =0

14

2

3
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and so on. If we multiply the respective equations by 4, B, ¢ , .. and
add, putting

Ay + B+ Cyy+ ... =¥,
wo have pY oY ¥ ... =0

The result proves that ¥ is a solution of the reduced equation. The
arbitrary constants are in practice chosen to suit the assigned con-
ditions of a problem. - )

Suppose that gy, y,, &o., are solutions of the reduced equation\.
They ate said to be lincarly conneoted if constants a, b, ¢ &e. ¢ ‘extst,
not all zero, such that ay, + by, + . . . = 0. Tf no such sonstants
exist, the solutions arc said to be linearly independent. 1t a pro-
perty of the reduced equation that the number of lineaxly independent
solutions is equal to the order. If the order is n and{the independent
solutions are y, to y,, then the most general solutionis dy, + By, . ..
+ Hy,, where the coefficients arc arbitrary coustdnts. This solution
is known as the complementary function; I Gontains arbitrary con- -
stants, in number equal to the order. \

A solution of (1) other than a form of bhe complementary function
is called a particular integral. The fulkaolution of (1) is the sum of the
complementary function and the wparticular integral. Tt is easily
proved that this sum is a solytion; for if ¥ is the comrplementary
funetion we have o
pY 4 ¥ Y 4L =},

s\ J
and if Z is the particulakintegral we have
LA qZ % ... =X,
Addition gives ) ::.\
R R o A WY
which p;q\;& that ¥ +- Z is a solution of (1).

22 p}?nétant coeflicients.
he reader is probably familiar with the case where the coeficients
p. g * ... in 21(1) are constants. The reduced equation is then
solved by the substitution ¥ = e™® which leads to
' (p+gmLrmd-f . . o=,
The bracket has a number of zeros My, My, . . . and the correspond-
ing solutions are e™®, eme, &c., so that the complementary function is
Y = dem® - Bemw 4. |

.
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There are rules for dealing with repeated values of m, as alwo 1 con-

jugate complex or imaginary values. There are other rules i Letor-
mining the particular integral in the commonly occurring ¢asi«. 'fllCh
as when X is polynomia), exponential or trigonometrical. These . in g5

are not our immediate concern; they can be revised in texts speially
devoted to the subject.

2-3. Variable coefficients, O

When the coefficients in 2-1(1) are no longer constants the sz'\.’r_}ok
is almost completely changed. There are 1o longer any rules fap i*fling
the particular integral, and if one meets an eqlmtion’}}t{ﬁch i not
reduced it ig usually a matter of trial or guesswork to ged tho particlar
integral, Fortunately, most of the equations which gﬁéencountef:, are
reduced and the need for finding a particular integral’does not ATise,

As for the reduced equation, there is no goldtat rule for solving it.
Relatively fow equations are soluble in finigéberms, and in fact the
vast majority of differential equationg remiin’ insoluble, A number of
methods are available; they include'sbiution In series, sohition by
definite intcgrals and by contour inftogration. We shall return to the
first $wo methods iater. Tt should e horne in mind that in general a
differential equation defines a trahscendenta] function, and the stu ly
of such a function is not altogether precluded by our inability to soive
the equation in finite term@ In any case a number of quite general
Propositions can he en r@aﬁed; they include:

(@) If a solution Qf&thc reduced equation g known, the order can

e lowered. In praghide the known solution is often found by trial or
inspection, N :

(i1} The p\dﬁxﬁcr of linearly independent solutions of the reduced
equation eahnbt oxceod the order,

{ii1) .L'ﬁea.ﬂy independent solutions of
in number equal to the order.,

{« turther comment; will he confined to equations of the second order,

the reduced equation exist

24, Secong order equationg,

As 3 matter of convenionce we take the
second order in the form

Y+ Y + ) ~ k().

We now bropose to establish the first proposi
of the reduceq equation is known, ghe order

linear equation of the

tion, that *if 4 solution
can be lowered . The
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proposition is true for any order. In the case of the second order the
lowering is to the first order, so that usually the equation is completely
goluble in these circumstances.
We accordingly suppose that w(z) is a solution of the reduced
couation, so that
w' +uffug =0,
‘The substitution y = wv implies
Yy =u'v + w,
¥ = duy - ow”,
The original equation thus transforms to N
(e’ I wlf - ug) + o' (20 + uf) u-'v'fw%iﬁ'.
The first bracket on the left is zero by hypothes\ig. Azccordingly, if we

put v'(x) == #(x) we can writc INY
.
2ae’ R
t — ) L
(f+ u) "

As thig is a first order ecluat-iun..ii;:‘it,‘t)llr staternent is verified as to
lowering. The value of ¢ can hg¥ound by the use of an integrating
factor, so that » and y can b€ found in succession.

2\

s J
Example.—Consider thoi\e‘ciﬁa,t-ion
SO v — = e
The reduced equation/ s
:\ W
ir easily sccxﬁ;&}léve the solution ¥ = x, henea we make the substitution ¥ = aw.

¥ ay —y=0

The origim{?‘e uation now takes the form
RN\ 2
...\Z 3 v’ 4 e -- o ¥ = aa.

1%& integrating factor is
2
= cxpf(a, - x) de = zels®,
This enables ua to wrile
H ’ '’ hd d ’
bﬂG‘l— v = 4zl = d&..'_‘(?’ G{},
whenece

2 b
v =G {ax@de 1 b1 — a-([ — ﬁ) + s a1
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‘Here b is an arbitrary constant; and 5 further intogration gives ¢, o i -
y=av=o2®+ 2) 4 oz | brfa=te—1xt gy,

The second arbitrary constant is ¢; the integral in the last term eannof i eply.
ated in finite terms, which is in line with our remark that in general a il oy ial
equation defines a transcendental funetion, It will be observed thai ;. Hirst
ferm on the right corresponds to the particular values == 0 — cand it i ofl to
the reader to verify that it iz the particular integral and really s a solutiog, 'J.ih\e

second ferm fs gur original guess at a golution of the reduced efuation.

We now come to onr second proposition. Tt takes the form$ Ml
reduced linear equation of the second order cannot have mer: - an
two linearly ndependent solutiong . It is established bylsligwing: « hat
& contrary assumption leads to a contradiction, - \\

We may remingd the reader that two simple simianeons equa’ ons
~ Imay he inconsistent. Thus the two equations

6y +7=0=6z4 of00 5
- 9y

cannot be g multaneously true, since (62 4 Qg;) 18 fifty per cent grrster
than (dz By). If we remedy the defiaibney by replacing 5 by 101, ihe
- equations become consistent but are tliectively one and the same.
In this case there ig a value of  for every arbitrarily assigned vaiue
of « and the number of solutions 18 infinite,

B_everting 10 our reduced@ifferential equation,

Q) KV + yoe) = o,

We assume that theljé’ca-n be three Linearly independent solutions,
which we may denote by Y1 ¥z and y;. We then have

#

(2) A& 4"y + g =0,
(3) "\" o8 ?fsz_‘“l“ Y9 =0,
(4) o\ ¥+ 95F -+ g <o,

B%ply the ﬁ?rst by A, the second by 1 and adq all three, Tt must be
possible to assign A, o 50 that the coefficients of S and g become zero,

(5} N1+ gy -y 0,
6) Ay + Bys' + Yy == 0.

To deny that ), #+can $hus be found g 1o assert thag

TN

V1. 0y,
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Fiic integration of this small differential equation leads to
logy =< logy, + loge; g1 = ey,

218 violates the assumption that the solutions are Iinearly indepen-
dent; hence A and p can be found, But note that so far there is no
justification for thinking them to be constants.

We are also in possession of the further equation

{7 X' ey g =0, ' O
which follows automatically from the others. The diﬂereptis:ﬁon of
squation (5) gives O

M+ Xys+ s’ + '+ g5 = 0,0
so that on subtracting (6) we have . \\
A! + ’ a — 0 N\
i T B Y 1\\'

Himilarly from (6) and (7) we derive_

Ay + iy

=G

In the last two equations the pqssiﬁgﬁi%y
?f_l oy

RO

+ Q)
is ruled out; hence we st have
A\, X =0=g,

\¥/ .
so that A andyfudre absolute constants, This establishes that the three
solutions are  fact connected by a linear relation

. O Ay1 - pys + s = 0.

(I 15 one thing to say that there cannot be more than two indepen-
\1&3’1’5 solutions, but it is quite a different matter to prove that two
independent solutions actually exist. A proposition of the latter type
is known as an “existence theorem ”, Existence theorcms usually
have three properties; they are long, dull and difficult. It takes a
special type of mind, even a special type of mathematical mind, to
revel in existence theorems; and as the reader is presumed not to he
a mathematical specialist he may be condoned if he accepts the pro-
position on higher authority. We shall accordingly assume that, except
perhaps in certain artificial and factitious cases, the second order
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equation has two independent solutions which are contittitni: yver
certain ranges limited by the infinities of the coeflicients,
Parenthetically, let y,, ¥ denote the two independent solntions;
then the general solution is ¥ = Ay, + By, where 4, B are uri,: tary
constants that can be chosen to fit assigned eonditions. This rai i the
question of what two solutions are fundamental. The answor i prrely
& matter of choice or convenience. Consider the oscillation o tion

% -+« = 0 for simple harmonic motion, It has the solutions O
T =™, ¢ gog wit, sinet, 4 sin (wt - -g), 5 cos (mt —: ‘I"}

desirable than another, e.g. it may vanish at e'origin, or he more
easily caleulable, Tt results that occasionally’mathematicians «i/fer
43 10 what are the best forms o eraploy, afid the reader must be Jre-
Pared to encounter ¢his divezsity, - O

25, Properties of the independenj;jééilitions.

' It hag already boen mentionad that our nahility to sclve a pur-
tlcl_llacr_equatﬁon does not wholly deter s from studying the function
which it defines, The squﬁa‘order equation, even when insoluble, can
be made to give inforriafion of two types. The first concerns relations
between the two solutions and the second. concerng properties of their
zeros. We begin, withthe former, '

Suppose th,@,,yl, Y2 are two inde
2:4(1), 5o that equation 2:4(2) and 24
have AN\

RN ("5 — ¥i9) {7y, — Yy M =0,
N@ds\é,.%hat the firgt bracket is the derivative of the second, so that if

denote the Jatter | s _ :
. Y 2 We can write 3’ 4 pp 0. T
factor is € P Jf (@) 0, 50 thos +of The integrating

pendent solutions of equation
(3) hold. Op eliminating g we

d
7z (G) =0, 2~ 4G,
or

@) B~y = dexp {7 (@)dz},
Al extremely ugefyl relation,
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Erzmple 1.-—Consider the equation
{1 — & — 229/ + n(n-- 1y = 0.

Tt it bnown as Legendre’s equation, and tho two transcendental functions which
are it lincarly independent solutions corresponding to our y,, ¥, are denoted by
P, wud 62, Here we have

- T2
fa) = 7% = gy loall — %),
Hevse 7 = (1 — a?) und the relation bocomes ' O\
PO — Py = Oy
2 [ ?ﬂ — (1— 9:2). ‘\ ot

iern o4 14 an absulute constant and ite actual value will depend ?n.f'ghc forms
tlor P, and Q. O\ ?

R&S
Tke relation (1) can be carried a step [urthersfor’we have

T
% Gy, dmo 2

Henes on integration, .
o da
@ . =y(3 o —)
1= Y &\ f Gyt
It follows that if y, is kne@n, y can be determined, as stated
previously. , ‘“,\

. \\ .
Example 2,—Using, af hefore, the reduced equation
2N ey —y=0,

we have * \od i

OVt = [fmds=
whence & = . As #g = @ we derive
i = a(B + AJzte 1 du),

N NG
NS

;n\' ";
Wh_lsbh agrees with our previous result.

2-6. Zeros of the solutions.

We come now to the second fype of information. It concerns the
zeros of the functions, the values of # for which the function vamishes,
or the places where the graph erosses the s-axis. And lest the reader
think we rather harp on these zeros, it may mollify him to know that
they usually hold the key to any problem under discussion.
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. If weitske the reduced equation in a form where the coviiivionts ara
oL 5 - -
devoid of frastions we can write

e .The':staﬁelﬁént that the general solution Ay + By, can b vade o
"o fif two conditions has one curious limitation which we shafl Laier find

useful. Tg may be stated thus: No solution of (1) can touch the AL
XIS except at & zero of P(x),

We are assuming that p, ¢ and = are finjte and have deriv;, (s of
all orders. Tf the solutiop touches the x-axis we have YOy =y,
whenee, if p(z) i5 not zero, y'* = Q by the equation. Difiere::- iation
gives A

VPHy 0 ooy 0+ yrie=0,
80 that if p(z) is not, zero 1t follows that ¥ = Oand all the suee: +ding

derivativey ean he gimilarly shown to vanish The applicaim of

neighbouring o!inate
:""" " B2
y=Jfo+h) = f) TR+ L@

Binee every term in the serjey vanishes by hypothesis, the ordinate
must va-msh-identicaﬂy and the curve degenerates to the F-axis,

"N Asan example, r U‘*eﬁfo'Legendre’s equation, whepe pla) = (1 -- 2.
o 3

solution ean toubh the w-axig €XCept at the two points given by
=1 Ttisa wagte of time seeking a solution that touches elsewliore.

2,
2%, The hormal form,

In the's udy of aigebraic quations it is often sy advantage to

mmf)ﬁ’ﬁ..ﬁef{i?iﬂ terms. It ig similarly found advantageous in certain
th@?r.e 1ca] mvestigations to temove-the middle term from the redneed
ond ordep differontia] equation. The result is known ag the normal

form 'aind_ 1t can be reached by the substitution y — g, Taking the
equation in the form

Y+ yf(@) 4 yotz) 0,
this giveg g4 before

W ) b o gy 0.

The coefficient, of vahishes if wo choose v go that
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1%

' 1 uf — 0, —+3f=0, logut1[f)de 0
o= oxp{—u ff(x)dx}, w = —1uf, u” ———uf + duf,

e equation becomes

dv+ o =0,

A, ¢
< 2 AN
’u‘.& NS ©

\/

whire I{zy =g — 3 (Z.z; —if% v=

it will be observed that the normal form is more comprd:zenswe than
e original whence it derives. Any number of equationé nay have the
normal form. For a given I we can assign f axbifrarily and then
tullows antomatically.

e

Erample.—As an illustration, consider the re(}u(}d\'equation
y A ay — y =00

hnis gy o
g= 1, f=a w=exp{ST ), T= (224 6)/4

TN,

epoe the normal form is N

42y %
dxg %*‘(?R + 6)? ¥ ="¥ cxp (Ixsj

it may be added th&t\]e normal form is rarely an aid to solution;
its utility les in, Qﬁher directiouns, principally in connexion with the
zevns. The fol] Wing is a fair sample of the type of argurment. If e and
b be two perm»wmble limits of integration, we can integrate the normal
forw ‘\\

. v 4+l =0

l:t\@%és [@’] a—[— f ol dw — 0.
5 Jb

If in particular @ and b are two consecutive positive zoros of the deri-
vative o we have

a
f vl de = 1,
b
the obvious implication being that the integrand cannot maintain

sign in the range b <@ < q. If it were further known that J main-
tained sign in this interval, we should be driven to the conclusion that
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o must change sign. In other words, » must in these i rnstances
have a zero between two consecutive zeros of its deviv: oo, All of
which, of course, depends on the derivative having two ;. oos; 1t.. may
have none. The converse theorem, known as Rolle's t1.mm, is en- .
countered early in one’s study of the caleulus.
Buample.—Consider the equation A
%+ 2y sine + {1 1+ sin®a) = 0, .
Ay
The hope of solving it is rather remote; but it is cagily shown to b,y {he normal

form Y

v+ {1 — cosz) = 0. N
Here I does not change sign in any range. It follows that {f ®hy of i infinite

number of solutions of the equation for » hag maxima afid minim. - lge must
alt.ernr&taly lie on opposite sides of the z-axis. We also hawve

%= oxp[— §[2sinzdz] = ex\p@oé ),

which vanishes for no value of z. As ¥ = uw, bhevzeros of y are goveinind by the
zeros of o, N/

")
2:8. No common zero, -

<

Two independent solutions “of the normal form eannoi have 2
conmon zero, or theiy Zxabhs can never cross the z-axis at o same
Place. We establish thi ii:dtercs’c-ing and important result by assuming
that ¢, and v, are independent solutions of

. o~ ¥ ol =0,
N
From the equatipns
~\~ _,vln __!_ ,le =0 = ?}2;; + ?}21-
we dedp@{ :
«":" L d
) 0 =y = 0= (020 — vpy),

£

O
Whenﬂe
R 1}1’1?2 — ’Ul'uz’ = 4.

If v, and 0y can he simultaneously zero, then the constant 4 must he
zero. In that case we conld write

’
i __%

)
¥ Ty

whenee 1/v3 = const., which violates the asgy

i mption that #,, », are
mdependent, Wa conclude thag 2, ® P 1 P2

» have no zero in common,
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29, Interlacing of zeros.

We can now prove the interesting and important theorem that the
zeros of v; and v, interlace. Having already established that

v, — gy =4

v, —vwy A d (i,‘l)
%A = (R

V2 vt dx

we can write

whenes

[ Ao O
I P A O
Chooze &, b to be two consecutive zeros of v, if such exigtd, We already
know that v, cannot vanish at either end-point; let uf further assume
that it nowhere vanishes in the range ¢ > 2 > b.'Thén v, /v, is a con-
tinucus function that vanishes at both end-points) so that the value
of the above integral is zero as calculated fz0m the left, But this
estabiishes a contradiction, for the integrh}lﬁ does not even change
sign i the range. 'We conclude that v;/v4.25 not & continuous fanction;
i other words, », has a zero betweehithe consecutive zeros of v af
@ and b, It is immaterial which oftthe solutions we call »; and #,, so
that cach function must havedigero between two consecutive zeros
of the other; the zeros of either occur alternately.

In ease the reader finds the matter abstruse, let him consider the
very ordinary normal ferm’

2,
&

It has the t#e independent solutions sinws, cosws. These evidently
have no.c&lfnon zero; and their zeros interlace. For the matter of
that, thesame is true of the two independent solutions 5 sin {ww — §m),
7 saf{oe + L),

2:10. A comparison theorem.

Before proceeding further it is neccssary to recall a mean-value
theorem from the integral caleulus. It concerns the integral of the
product of two fanctions and shows how this might be related to the
integral of one of the functions alone. Working in some definitc range
of values ¢ > & > b, we stipulate that the first funetion f(z) shall be
one-valued and continuous. Somewhere in the range is & value of @,

(G 150) 3
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which we may call & where f(@) takes the value f(£). Wirl: tlie second
function ¢(z} we are not concerned about its continuiiv: hut we
insist that it shall be one-valued and not change sign i ilie range,
The theorem states that

./:.lf(x)?s(ﬂ?)dx xf(f)_/:qﬁ(a:)dx, a>> £ h

The proofis simple, for the continuity of f(z) guarantees that: i+ achieves

s upper bound U and its lower bound 7, As $(x) dors st vhauge
sign, the value of the integral on the left must lie between O\

Ny

Ufb “$@)ds and L fb “b(z) dz.

ot ¥

Henee there is g number K between 7 and L for wﬁi}h we un write
[T = & [“ba)de, UK > 1.
)] ) I3 ) \ v

The continuity of Jlx) further guarantesdythat it takes every value
between T/ and L af least once, Hende ‘there must be a valte of &,
which we have cailed ¢, for which f{8= K. "This establishes the result.

¢ NOW revert to our differential equations. The normal foirm be-
comes most fruitful when cpmparison is made with a similar and
simpler form. Suppose that e have two normal forms '

WNUH =0 — ¢ 1 ok,

From these we deriye-
A

oS — gyt (H — K)up,

whence b&'kh"ﬂsémtion

* S ¥ * @ e
o\ !:w.w — uw]b:j; (H — Kyurde.
Tiet/a, b be two consecutive Positive zeros of v; there is 1o foss of
generality in assuming that o j iti

Uy (@) — ubp(p) — fb (H ~ Kyunda,

and we Propose to show that if H> K thy

oughout - g
T > b then 5 rust have g gerg ughout -the range «

b‘etween @ and b. For gipee (H - K
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ig pesumed not to change sign, being i in fact positive, and w(z) is pre-
surmed to be one-valued and continnous, we can write

afay' (@) — w{by’(B) = w(d) j; (H — Kpde, a> ¢>b.

Ingpection shows that u(a), u(b) and (&) cannot all have the same
sigu, which proves that u(x) must somewhere eross the z-axis and have
a zero in the range ¢ > x > b, )
45 u corollary, if we assume that » and » have a common zero &t
@ == f, the relation rung . O\
'\

ula)y' (@) = ulé) _/b(H — Kz, O

As the integrand is positive and ¢'(a) is negative, it fo]{oas that u(e)
anc u{€) are of opposite sign. Hence w(x) vanishes a s86ond time before
2(=) has time to vanish at ¢ = «. \

R

Fagmiple.— -Consider the cquation ¥ 4+ a—1e%y—- D} of which the solution is
by 5o yeeans obvions; in faet, its solution is not, m{s} ‘to obtain, Away from the
origin. the coefficient a1¢% i continuons and ]1&8 derivatives of all orders. Com-
pars this with the equation y 4 n?y = 0, thd\Yeros of whose solutions ocour at
alc of w/n. Whatever the value of Nt must eventually happen for suffi-
cienily large values of x that z—e® cxceeds n?, 80 that (27%% — 2%} is positive.
It follows that any solution of the glven cquation must ultimately have a zero
in evory range whose length is m /.- \With increasing = we can afford to make »
larger in the comparison equatida, ‘whenoe wo conelude that the interval hotween
consecutive zeros of solutlohq\of the given equation probably decrcases with
increasing .

211, Equations@eﬁtaining a parameter,

Having e@oundpd all that we shall need {0 know of the equation
in g nox:mcxl form, we turn to another matter that will figure pro-
mmcnt,h\ In the ensuing pages. It sometimes happens that a differ-
ontsﬂj equation contains a paramcter n; the case of Legendrc’s equa-
tion hag already been mentioned, as also the oscillation equation
J + n¥y = 0. The function of = defined by the equation then differs
in value according to the value of n. The symbol denoting the function
has the parameter written as a suffix and this is called the * order ”* of
the function. In such cases there are usually simple relations connect-
ing functions of contiguous orders. These relations are known as
““ recurrence formule ” and are particularly useful in computation.

As an example, the equation zy” -+ (1 — z)y’ + ny = 0 is known
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as Laguerre’s equation of order # and its solution is denois| by L,(2).
Its recurrence formula is known to be

Lops(®) — 20 - 1 — @)L, () -F #2L,, ((») =0,

and this connects the functions of the three contiguous ortos p + 1
nand » — 1. In any given case the rectrrence formula cas: s clerived
only when the solution of the differential equation is knowa,  Con-

versely, the differential equation cannot be derived front ihe reCuts,
rence formula alone. Usually there is a connecting differemini l‘il‘l'}.l-\tl\qn ;
in the present cage it happens to be L™

N
L) — nl!_ (x) = —uL, ,(z). A\

212, Orthogonal funections, A\

Two functions which merely differ in their opder el possess
Interesting integral properties, one such prope®ty” in particulir being
known as the orthogonal property. We caniiliustrate this by Lezondre’s

equation, Fet (@), P,(z) be the funct-iéils}t-hat Tespectively satisfy
the equations N\ o

(=P, — %P, Snim -+ 112 — o,
L= — 2B nn 4 1), — 0,
On mulfiplying thege Iespgeﬁi;ely by P,, P, we deduce

{mim +-1) — %(%;t\f?}i’ﬂPm = d—ﬁ {1—aP, P, — PP

. <’
A b_racket on 1;:11{ Dght suggests limits of integration and we have
: \v 1
A [ PP =0, mn,

Tl}i&,{g “the orthogonal property, and the functions PP, ... are
Smd; % form an 0r§hogona,1 farily. Ag a matter of fact the reader has
Years been familiar with at least two orthogonal families, The one

is sing, sin me sindy -, | ‘y Which hag the Property

ca
f 0% 8in e dy — 0, m=+xn

The other is obtaineq on replacing sin by cos,
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EXERJISES
Solve Laguerto’s equation of order unity, viz.
'+ (11—l +y=0

afloy firet verifying that y = 1 — x iz a solution.
2. Prove that any two solutions of the equation

y’ cose 4 ¢ sinx 4 ysin?a =0 2\
aie connected by the relation A
vy T 'Y = @ cosa ¢ < N
3. ¥orify that e Is a solution of p ‘.’}"s..

y'{cosx — sinx) + 2y cosx - yleosz - sin x).z 0

antt hence deduce the other solution. In what circumst-anceﬁjg\ould a solution
togel the p-axis?
A\ in2
4. Prove that the last equation has the normal form.DV —_ Hﬂ =
\ ¢ 1 — sin2x
5. Prove that the squation of damped oselllatlom, #-f Q0f - (@4 =10
hag I same normal form as When the osclllatwm «are undamped.

6. Reduce the cquation »” —]— —]— (1 ) y =0 to normal form. What

ad

do you conelude from the rc&ult? 3

7. Prove that any solution ofda®y" 4- xy’ -+ (#® — nly = 0 must have an
infinity of zeros. P

8. Any golution of ay” -f zy’ + {1 4 a2}y = 0 has an infinity of zercs whose
interval ultimately tends o %

9. Without using, tllé ;:mrmal form, prove that two independent sclutions of
the reduced equation ¢aXtnot havo a common zero.

10, O I7 i gu@t\r than K in the two normel forms

\“ % 4+ uwH = 0=1¢" 4 vk,

it was prqved in the text that % must have a zero helween snccessive zeros of v
Give, 2 p}oof without the mean-valuo theorem. Assume that u(z) has no such
roo\nﬁ can without loss of generality be taken as positive throughout the range.
Show that thiz leads to & contradiction.

11. Weber’s function D,(x) has the recurrence formula
Doy — 2D, +nly, ;=0

S

and satisfics the differential relation
DS+ dxD, —aD, ;=0
Deduce that it iz a zolution of the differential equation
4"+ yidn + 2 — %) == 0.
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12. Deduce the reourrence formula for Laguerre’s function i the differ
entisl euation
: Y+ (L~ a)y + ny= 0
and the differential relation
LS —aL, /= —al, .
13. Prove that Laguerre's function has the orthogonal propertsy
: £ N\
f e L, L.dx =0, A .
0 <\
14. The Tschebyscheit function 7', of order » satisfies the equati \"}\
(I —a%y” — ay’ 4 w2y — 0, ("}5
Prove that it bas the orthogonal property

2 'g.

\:"\\
17T \Z
f e dr = 0, \

~-1 V{1 — a2 A\

' 4 ¢ '\

() of order » szgti%ﬁ@é the differential relation

B, =22l 5
and has the recurrence formuly RS

LN

18, The Hermite funetion &

Hopn— 2B 0, — o,
By differentiating the latter, show, that H, satisfies the differential oguation
iyi\— 2zy’ + 2ny = (,

Deduco the orthogonal pxétp\arﬁy

\7 ®

< . f HH ez — 0,

M :50’~ i
The e d®) .
¢ Hermite’ and Laguerre functions ooeyr in the applications of Schrad-
D In guantum theory; gee I Weyl, The Theory of Groups
end Qugniy Mec?xqmcs, P 54-70; B. L. van der Waerden, Die gruppen-
de in der Quaﬁfenmec}wni}c, pp. 12 -16.



CHAPTER Iil

Cylinder Functions

¢\
3-1. #scurrence formulee,

% «vlinder funetion C,(x) may be defined as a function of z mvolvmg

a P .c_;.mﬁtel # and satisfying the two recurrence formulz i O
2n N
On—l(x) -+ Oﬂ+1(x) = — n(m)! AD
& "\
Cosl) — Corsfe) = 2 O
f--1 #n+1 - dr )ri:i)\-’: :

4
W

In gencral 2 and # are unrestricted; butyih bhis work attention will
be tonfived to such values of z as are. rcsz and positive, with » real
but net necessarily integral or pomtwe

With a view to simplifying the motation, the argument  will be
droy sped when not in doubt, so that we shall write C,, for €, (z); and
a prine, or dash, will be used %o denote differentiation with respect
to the argument, so that ()

N\
.. d :\ , o d __ld
(/'n e E‘rﬁ Oﬂ(ﬂ}} : ) Cn (ax) = m Oﬂ(a$) — (;, ﬁ ﬂ(am)’

\ &/
- The abhove two ;['Ormulae are accordingly written
“\s.

_ Y 2
DR Com + Onr =" O
20" Coy — Cryy = 20,

B)%Ld(htlon and subtractlon they are equivalent to
(5) xcn—l - ??;O,, + ﬂ';On H
(4) aCpyqy = 00, — 20,

It will now be shown that such a fanction €, must safisfy a certain
differential equation, known as Bessel’s equation, of which the solu-
tions are Bessel functions. Accordingly the cylinder functions are

Bessel functions, or combinations thereof; but as there are at least
5
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six different types of Bessel function, each with its owi seculinrities
and bearing the name of some eminent mathematician. ot all pos-
sessing propertics in common, thers js 5 cettain advantaee retaining

the term cylinder function for the moment.  We can Jdioriminate
between them later on,

Much of mathematical physies is dominated Ly Lapluc: « oquation

and Laplace’s operator, and when these are translated into v Iredrieal
co-ordinates, Bessel’s equation almost mevitably appears, - willbe
found more than once in the ensuing pages. This aceonis for the
name “ eylinder function ” which is common on the Contin. & md in
Amezica. Tt appears to be due to Heine, >

Z 4
3-2. Bessel's equation. (v

The differentiation of 3-1(3) gives
1) 20, + ()0, = a0, 0,
Maltiply 31(3) by # and subtzact from (lj}nhlt.ip]ie(_l by . Tlis gives

B0, 4 20, — w2, — 33{5-‘"-013“,’1”{;" (= 10,1} == —2%C,,

the last step being justified by 3'1@)'.“ The result shows that (', satisfics
the equation S

2) 2y Ay - (ot #iy = 0,

L . \N
which is Bessel’y equa{;%n of order n,

The recurrencesformulas cannot be directly deduced from Bessel’s
onal to conclude that any particular Bessel

» Teversing the above argument, a function that

(l) ﬂ‘incﬂ__ — gt T2l d n
1= mEm0, - gng, __Ei_a_;{m gn}
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According to Rolle’s theorem, between two congeentive zeros of a con-
tinuous function lies a zero of its derivative. Taking the continuous
function to be 0, between two of its consecutive zeros lies a zero
of its derivative, i.e. of 2°C,_,. If we move away from the origin to
avoid possible discontinuities or such zeros as may come from z*, we
conelnde that between two consecutive positive zeros of C lies a zero
of ,_,. -
Similarly 3-1(4) can be written

' —t— —1, d —H,
(2) 20, — na 10, = —x 7, = 7 fz—0C,),

(\NA
whence it follows that, except possibly near the origin, a zero QP T,
lies between consecutive zerog of C,. Changing the orderfioin n to
n— 1, a zero of O, lies between consecntive zeros of Oy fhand taking
this in conjunction with the similar result obtainedffom (1) we con-
clude that the zeros of 0/, and €, _, interlace. Incidentally this is not
to be confused with the similar proposition, prqw&‘ﬁl the last chapter,
concerning two solutions of the same equatign.\
Note that (1) can be reversed to give ¢\ x

(3) f 370 () d:vvﬁ’f’on(z)

™

and {2) can be written
4 R £ NV Y | s
(4) f .z: t’j‘?ﬁ{m)dx =0, (x)

N\
3-4. Integral orders. M \

It scoms at firdy i:'—;”lght- reasonable to suppose that functions of
integral order might be more tractable than others; but they posscss
one awkward-drawback. Putting » = 0 in the recurrence formule
3-1(3) and SN4) we have

(1 ').\:f e ¢y =C_ = —C,.

It‘appears that, of the two functions ') and €_; of the first order, the
one is a mere numerical multiple of the other. We proceed to inves-
tigate further. Putting » = 1, —1 in 3-1(1) we have
0, + =0, = 20,
a0, 4 oy = —20_..

By subtraction,
{0y — Cg) =2(C, + C) =0,

whenee C = (—1)2C,
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Putting n == 2, —2 in 3-1(1) we have
20 + 20y = 40,,
20y + el = —40_,,

By addition
: (05 -+ Cg) + (' + Cl) =40y — Cy),
whence
Cy = (—1)C,,
In general, - N\
$(On+1 + C—n—l) + m(o‘n-—l + O—n-{-l) = 20{C, F (jy}\s:\'
according as # is even or odd, and ib is an easy induct@oilz,?wi'i'if.’il can
be left to the reader, to prove that N
@ Con=(-10C (D

Bessel's equation, being of the second orde;r',:certainly posiesses
two linearly independent solutions, The mipdrtant point i3 that for
mtegral orders the second independent, §olution is not obtained by
merely changing the sign of n. Thig gomplicates matters considerably,
and later in the book we shall takeMip the problem of finding the
second solution in such cases. AN
8:5. The normal form and the zeroq.

The ideas expounded

a1 the Previous chapter can now he applied
to Bessel’s equation. , Its

leading coefficient is 22, whence wo conclude
that no solution cambave a repeated zero except possibly at the origin.
Otherwige expregfed, ', can have no repeated positive rero and the
graph cannof §ouch the z-axis except possibly at the origin, Com-
paring Be:sgg]ia’ equation with

W i
\J ¥ +yf@) +q z) =0,
wel}é%,in%?, fe) we)

A SO =1 gy =17

/2N

\‘;

¥

U= expf{— %ff(a:)dx} =g,

df y I — dnt
=g 1% , 3 ! 4
g 2g If 1 42 1

] 1— 4p2
N ) =0, v =20,()

This is the normal form of Bessel’s equation,
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Ia the particular ease where n = -1 the normal form redunces to
the simiple oscillation cquation o 4 v =0 with the solution » == R
gin{z -= a). This connects Bessel functions with trigonometrical func-
tions unud we have the remarkable resalt that *Cy and #*C_, are of
the [ow @ cosx 4 b sinz with an infinite number of zeros at intervals
aof =,

Mora generally, I is necessarily positive if {i) 4n? << 1; or (ii)
dz? + 1 = dx?, which for any value of # must be the case ultimately
for laygs x, I % <1, I > 1 and is monotonic decreasing to umty
Ifa? 5 I << 1landis monotome increasing to unity.

Wo now propose to show that if #® <C  the function #*C\y hﬁa at
least one zero in any range 0 << a < 2 <C a + 7. The proof ¢ condists in
showirig that the contrary assumption leads to a contradletl,tun » Assurn-
ing then that the function has ne such zero, thereis no losg.\of generahtv
in taking it to be pomtne throughout the ranges The origin is de-
liberstoly avoided since we do not know how, tbe function behaves
there '\‘.

Ve make comparison with the ﬁmetmnxw = gin{x — a), which
hag cornscentive zeros at o and @ | 7. Between these values it is posu-
tive and it satisfies the equation w"” W= 0. On the left, w’ is posi-
tive at o, whilst it is negative at a &% on the right. From the normal
form v + »I == 0 we deduce  ~\°

v’ Lot = (I — Tjow,

r\.J

whense & -
rm-ilr(f — 1}v-wd:i;:; [ew' - e’w]”w: ['uw’:l a“
Ja N . .
"\\ = v{o -+ miw'(a + 7) — v{a)wla).

In cweorde{\se with our assumptions the rlght side is essentially nega-
tive; bdpthe integrand is nowhere negative in the range. This estab-
1%1&65 the contradiction and we conclude that ziC, has a zero in the
given range, and hence €, has an infinite number of positive zeros at
intervals of not more than o, provided #® < 1.

An upper limit to the interval between the zeros being = when
#% -7}, we can now establish a lower limit. Le‘r e be a zero of C,, and
let

(a)_-l—l——iﬁ_fcg.

Then I(z) <22 if 2> a. Consider the function » = sink(z — a)
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which. has cousecutive zeros at a, a + =/k and satisfics {1 vijUation
w"' 4+ F4w = 0. Then

ff{fsé_ Tyowdz =ff(wv” —w)ds = [ — ']

Take 8 to be the zero of v next following @ and suppose that, if jussible,
it falls short of a - #/h. This ensures that (vz), w{x) and i* — [(x)

are all positive (or at least, not negative) between « and 8. T miegral
s therefore positive; morcover, _ \
g(ﬁ) :O:’u(a) —_:%(G.) '\:\

NS ©
The right side accordingly reduces to w(8)v'( B) where #'( B T.c.zative.
This makes w(B) negative, thus showing that w has crodsed thie s-axis
and contradicting the assumption that B fell short fa 4- =/ We
conclude that 8 > a +- #/k, or \4

TN,/

@ IR o e
Note that with increasing o the int-e;'xiéﬂ' épproaﬁheﬁ 7 from Below,
provided u? < 1, &

We are now in a position to‘&‘c;i%é that any cylinder function, of
whatever order, has an infinity. b zeros. Tor choosing any value of n
guch thet #2 < 1 and calling*it p, we have established that €, has an
infinity of zeros, These areinterlaced by the zeros of (11, and these in
furn by the zeros of Cionand so on. Working in the other direction, the
zeros of (7, interlace, a.;zﬁ are interlaced by, the zeros of Cp_y; and so on.

& shall nowestablish o theorem concerning the second non-
negative zero, (I the origin happens to be g zero, the proposition
coneerns t};pimagnitude of the first positive zerp. T.et aj, ay be the
first, two,@n—negative zeros of C',, and let 8 be the zero of C,' between
them, j(?bviously B <Cay and we Propose to show that n << 8. Consider
the graph of 0, between o, and @y If it passes through o 1 from below,
\%} 1 po'smve,' t]'le Curve rises t0 a maximum and C.” is negative.
Mbernatively, i 16 passes through a,; from above, C,, is negative, the
cour:e sinks to a @niz]:}um and " is positive. In either case O, and

n are of opposite sign. By hypothesis Cu/(By =0 and if we put
% = Bin Begse]’y equation we have

FOSB) + (8 — w0, (8) — o,

:ﬁbrzotioildude that (82 — %% is positive and that B 15 greater than » in
e value. Hence | | <8< o, Descriptively this means that

~
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as the onder rises the graph is more leisurely about reaching the second
ZCTO.

It remnains to consider the heights and depths to which the graph
riges and falls between crossings of the z-axis. We shall prove that the
successive mazima and minima decrease in absolute value. Taking
: case of zero order, Bessel's eqnation is

the simnie

it

o Loy 4+ ¢, =o.
z o
%, and integrating between u:mspcciﬁed limits alant

N
N

[ ’ﬂ ' Qf Oy + [ O 2:] =0. N
\\'.’
If @ anct A ave taken to be positions of stationary valiie) not necessarily
couscoilive, we have )

2f - 0,2 de = (2 (a) O\zt )
ogral 18 certainly positive if we. are working on the right of the
OT'lglﬂ and 50 Cy{a) is greater than GQ(‘I)) in absolute value.
More generally, we can multlply Bessel's equation of order n by
20, and write ..,

2&”2 2x '
_ 2 _pnge0,0,) =
0 <Q$. + .

o™ . 2

A.S AW d $2 A ‘)_-T;ﬂ »

A de\dt—n2) (2 —wE?
po &/

integrntion\t@y*’ba.rt-s givcs

5 e

Takmg ag before @, b to be pOSitions of statiopary value, not neces-
sarily consecutive, we have

A (7 0,20 = C,Ha) — O,%B)-

The integrand is necessarily positive if we work on the right of the
origin, hence: The absolute value of any maximum or minimum
exceeds the absolute value of any sucwedmg maximum or minimum,
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It is an easy” deduetion from, this that there is only one :zero of
between two consecutive zeros of Q..

To sum up what we have learned of the function (), we have no
formula for caleulating it; we do not know its valuo for anwv 1-
value of #; nor can we say how it behaves at the origin, (h; i
band it has an infinity of positive zeros which cccur at nea

‘tieular
¢ olther
I equal

Fig. 3— March of 3 cylinder functions,of‘cmflsecutive orders
"Crn” = 0 when Qpyy = Cn<1 (A and B)
"

S

otion of order § has its zecos at
absolutely equal intewalgiobn and is expressible in sines and cosines.
For the most part the geaph lonks like g damped vibration, but it can-
not: be called periodigy, for one thing, there is no constant period, and
for another thing,‘khe Values do not repeat themselves (fig. 4},

36, Tranéfo;;g’ﬁtif)ns.

It rarvbi “happens in
appearagice in the standar

& 10rm of Bessel’s equation.

One of the mogt, obvious forms ig ¢ htai .
that dz is replaced by Edz. The qulliu;o atned on replacing & by kx, so

n. becomes
dgy 14 ne
1 Y R
(1) a2 + = de + ("752 - —2)?{ =0,

with the solution 3 -— Colkx). Other exo

the chapter an x. Tolses are given at the end of

append an example of the method.
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Erumpic.—TWo have, as at 3-3(1),
C% [0, | = a0,y = 2" 10, 1
To find the squation satisfied by 2"C,, we have

L (0,1 = 20,y + o L [0, ]

ehe?
= @ Wy + @20, ] N\
A ¢
= -1 +oat %{nm__l_} Cpr— Cﬂ,] pr :'\ \
i
= (2n — 2™ 10, — "0y - ;\\‘
The elimipssion of ,_, then gives : . \\:\'\ &

1— 2%, \
y”+—x-??y +y=0 O
T2\

W .
as the equation satisfied by y = 27C,. Note tha,‘a’Iﬁ\n = %‘, this reduces te :he
oscillation equation for simple harmonie motié:zol;ﬁnd again proves that x#C}
can be oxprassed in torms of sinx and cosa. .’}&

“‘ :
L D

&N

“5
A comprehensive form that cgyers most cases oceurring in practice

is d
1—Z2a 'y a* — nPy? 0
2 ¥+ --———m——{"\%;[(ﬁym“‘l)g T YT
P N
whose solution is. .
PN\
@ y = 0ol 7).

We L‘-Stﬂ]lliéh\t:ﬁis regult as follows. A solution of
p ‘:\:"; o2 g 1z ift 4 (B2 — n¥) =0
\‘> dz? dz
is £ =0, (Bz). If 2=1ua" we have, using dashes. to denote differentia-
tion with respect to o,

a_v_ v
| A
This can be written
@& 1 dt
z — —
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whence we get-the equivalence of the operatory

d_1 4

T =0 _—

dz y,)dx

when applied to ¢. The differential equation can be writkea

z jz (z :?,i:) + (B% — a2 =0,

whence QO
d dt 24 \\'
r—. it 202¥ __ 2 % — 0, R
AR
e s dt , N
The substitution ¢ = yz gives @ —. == g/31-% _ gpp-am
dx ¢
d{ a
x 2V = taz-a . 2l ‘J_ 2y
2= 8y =yt Za)y BN a2y

PN
After multiplying through by z=2 thig giué’&.\the required result. This

will be taken as a standard and will bé geforred to repeatediy in the
fo]lowin,g Pages. - N\

E.?:'r:tmple,__Aﬂ an example of itﬁrE{:*G; lot us settle the question whether the
eauation ey’ — gy | (pe .y il 015 o form of Bessel's equation; and if 80, -

what is the dppropriste ceylindet fanction. We reust it ag
. )
S ¥ ( 3
.‘\';1\ m+ a:”—]—‘Ix-:;y:O.

Comparison with (2)\Lhen gives

:t\“. 1——2&::'_-—], Ba(_—_: .
N\
.\”’: 2y —2=2 g2 niy? = 2.
whemn O
CE:; =1, B=1, v =2, %zi?}'

“\? "fuﬁ}nclude that the equagion i of Bessel’s type and hus the solutions

AV 20y{4e%), wC_y(1a2),

It is worth while mak

. ing a few obgervati , .  Yote
that if the middle torm, jo g bt o o equation (2). No

form, we mugs 1 ml?slr'_lg’ 80 that the equation is in its normal
Inidd,le tern i ave @ =35 This t_:nables us to say at sight that if the
versely, g £ S missing, the solution must have the factor at. Con-
normgi’ fo 1lrfct-1on’0‘f th? ff)rm' méoﬂ(ﬁﬂ) satisfies an cquation in its
othensi m and ' jg mls_‘smg. Note further that y cannot be zero;

18e expressed, the fipst term in the square bracket cannot be
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shsent. For one thing, the argument of the function ceases to vary
and degenerates to a mere consfant. Moreover the equation ceages to
be of Bessol’s type. It degenerates to

2ty + (1 — 2a)ey’ + o®y =0

and is soluble by elementary means. The reader can verify that the
results are consistent, a solution being y = 2 Incidentally it is illa-
minating to find the other solution.

A case thai ocours often enough to merit special notice ie when
o2 =n2? v =z} 50 that a == jn. Its differential coefficients are pars
tienlarly simpie, for if : N -

y = atCp( Bt

S )

& 4

the recurrence formula runs '\’i'.'
nC, + B*Cy = priCh g ’

S _ A\ ‘
where the wnwritten argument is Szf and the dégh denotes differen-
tiation with respect to the argument and nobwdthtrespect 10 . Differ-
entiating & {unction of a function we have _ \J
? = %’-"M}%”_lon THJ;:"B{B%“_%O“’;
i al

“ £ {0 B e Cna P,
which might have beew’derived hy change of variable from the pre-
vious result 7 :
7 & o] = 0 Cuni)

’\:w: dx
In both y~.ﬁ£1d\its differential coefficient, the degree of the factor z 1s
half fﬁﬁe"fgi:der. Consequently if a point has displacernent 2 at time ¢
given By w = #*0,(kt?) its velocity is 1hi320,{ke?) and its acceleration
18 HRA 0, (kY. . ' .

The companion form, which will figure prominently in the applica-
tions later, is

) c% {onC(fat)} = — 1 B0, (B

(a150)
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EXERCISES

- L. Bhow that the stationary values of €, are located by the zeios of 0y the
staticnary values of 0, are located by the roots of C,, =0y
2. Prove (1) Oy — Oy = 201"; (il) Cy = O — Oy fa; (iii) € - itly + 40
= 0; {iv) 2%0," = a0y + {n{n — 1) — 22)C,.
3. By repeated application of the recurrcnce formule, prove N
B Bl a=nC,— (2t 20t (n+ 40— . . . A\
¢\
(i) 2ol = 300y ~ (n+ 2)C0ps + (1 + )00y — . g -

4. Prove that 40," = ¢, _, — 20, 4 Oyyer Henee prove l‘\}y&!{l-:i.'!ll'tiﬂﬂ that

9"('}'— 1) ".:‘ vy
2"35;?- Co=0hp— Ty + ey Crpps— o \\'} {(—7in

d\l‘

where v is & positive integer and the coefficients are b

bindmial.,
5. Prove that O
; : ‘\
e [¥"Onfen)] = a8, (az),
T [ Cufaalls —aa 0, (ax),
d N
& VRN (@) = —qabdomig,, v ).
6. Prove that KV
N\
\ \ d
o @) Ol = 20,y
¥/

O a
x"\:’:'\ {—2) d(_a:‘z)_ [a:‘”On] = fn_lng-
Deduce that
W\
A
m~\J

N\

whore r {5 & positive intoger.

?

Hmts

d"
¥ gy 0 = anr

dar
(=2) Gy 07"0,] = &g

Htr?

7. H Qyfe) = 0,2 =Py
n( ) n ("c} Prove Qﬂ.—l - QiH-I. = ; Qﬂ d
8. By methods simjlar 1o thos i
. e used in the text, j i Tties
of a function I {x) which satisfieq the two rta]a.tiun:X ©visteste the properd

In—l '}‘ Iﬁ_‘_l = 211,;; %
&

Iﬂ-—l_ In+1 = Iw
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9. Justify the following statements when # iz positive ;

(i) At any positive zero of ,_;, the fnnetions O, and (7, ; have the same
sign.

{ii} At consecutive positive zeros of € _; the funclion (7, changes sign.

{iii} Between consceutive pasitive zeros of C,_; the function €, has an
acddi number of zeros.

Interchanging €, _, and €', ; In the argnment, deduce that their zeros inter-
iace. This is an extension of the theorem for conzecutive orders.

10, If @, K,, are two cylinder functions of the same order {solutions of t-hl\

sume equation), prove from the recurrence formul® that
N

K, — Cn’Kn = O Ky — Colyre ”\.'\

'\
Deduce from Bessel's equation that the common value s A/x, wherevd is an
ahsolute constant, By considering two consecutive positive zeros{of%C,,, deduce
that the zeros of €, and K, interlace, Of what general t-heorem\ g’ this a parti-

cular caze? 2\
11. Derive the following transforms of Bessel's equabign and check by the
general formula 3-6(2). ..\\f

W

1 o n? ‘..\
W+ v+ 4z )y = 00G= o

2
(2) ay" + o + %(I — ?;—)y =0y O Va)

XY

@) oty +y=0. J} y = 2A0;(ked).
() g+ ay=0. [ y = ab0y(32").
() 2 + y g D y = aiC,(2Vx).
. 2tV
Oyt 5 v+y=0 y = & "Op(x).
¥/

12, Ifn is ha,l‘;f\'gm’ odd integer, positive or negative, prove by the recurrence
formule that\p':'i(f,; has the form A4 cosx - Bsinz where 4, B are polynomials
ina . AN

13. Pro’?e by the use of Bessel's equation that sil derivatives of €, can
be expressed in the form AC, + BC, where 4, B are pelynomials in 1. Deduce
tKat, Yor integral orders, €, can be similarly expressed as AC; + BC;. In par-
ticular, work out the results for n = 2, 3 and verify that

24 876
C,= 1—-:?:'2' Cu+5_c E-—I e

14. Tf »® > } and «, ( are consecutive zeros of ) with 0 < « < [}, prove that
the interval (B — o) is at Jeast w.

15. If m is fess than n in absolute value, prove that ¢, has a zero between
congecutive positive zeros of O,

16, Prove from Bessel's equation that (0, cannot have a repeated positive
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zero, and that €, and (1, cannot have a Ppositive zero in commion, TTence from

the recurrence relation deduce that O, and €, cunnot have o puositive zero in
n w+1 H

COmmon. ’

17. Prove from Bessol's equation by conmsiderations of sipn thut £ has only
ome zero hetween two consecutive zeros of O, Deduce further thui arfl -+ b0,
has an infinity of positive zeros.

- 18, If the coefficients z, b aro real, prove that azC,’ + b, cisot have a

repeated positive zero greater than n, {Use the function, and i1y dirivative, in
conjunction with Bessol's equation, ]

RS
o~
Y
2 $ (/
W
N\
D
&
{\) '3
N
‘:\\\
ON°
N\
<
g\ '\/
N\
\)
)N
O
W
\‘V



OHAPTER IV
Bessel’s Equation

4-1. The series solution. N
If we write Bessel’s equation of order » in the form PR

2
v gy + (- n—z)y =0, Y
z @ O

S\
with the leading coefficient unity, it appears thatlebnly point where
the other coefficients can become infinite (knownyas the singularities)
is the origin. To the practised eye it is t-he%@}ident from the theory
of differential equations (intc which we ¢ _hot propose to cater) that
there is & solution in the form of a seried of ascending powers of z,
convergent for all values of & exceptgi0ssibly at the origin itself,

The formal method of obtainingithe series is to assume

Y = g2 1+ g g™ L L

If this, with its dcrivat-ige@,}\'oe gubstituted in the differential equation,
the result should be fdenfically zero, so that the coeflicient of every
power of # vanisheg\This procedure supplies a set of recurrence for-
mulz whereby alldthe coefficients can be determined in terms of the
first, which remtaing arbitrary. The very first coeflicient supplies an
equation, Jfiown as the “indicial equation ”, which decides the per-
migsible&alues of the leading index .

Fofthe sake of simplicity we shall take Bessel’s equation in the
m~e.giﬁi'ed form '
N 2y’ + (@n + 1)y + oy =0,

whose solution is ¥ = 2, (x). We now have

zy’ = r{r — Lag™ 4 (4 1pa@™ + .0y

@+ 1)y =@n + Upaemt + . .. + ...,
vy = aamt L

On taking the sum, the coefficient of 27-* must bo zero. Since a, can-

not be zero (the series must start somewherc) we have the indicial
15
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equation r{r - 2n) = 0, whence r = 0, —2x. For preference we shall
continue the work using the former value,
We now have

Yy=¢t+ar-tax-t ...,
whence
zy' = 2a97 + 3.2a,3% L 4Bupd + ., 3
Ty = 2t + et o NN,
(@n -+ 1)y = (20 + 1)ay + 2( Jag + 3( Jag? + 4( Yo X .,

where ( } is written for (22 + 1). This on addition gives ¥, = 0 and
1t appears in suceession that every coefficient with ¢dd suflix is zero.
Our serios is therefore an even function of the fomi v

¥ =0, + ag® | aut + L

3 " 3 ™
Disearding dead matter we now have )
fr

wy = 2lae - ;4:..5':&;;&;3 -+ 6.5a,0° + ...,
ry = %% + ,*.::;':’“‘51233 + @’ -
(2r + 1)y = 2%n -+ L)aye - 48 + Dag® 4+ 6(2n + l)age® + . . . -

Hence ,{"‘,\“\
R (2 ao—}- 2’
oV H 2
) AW
Y4 = gy g @
\“Za pooTe 24(n + 2)(2n + 1)’
A\
BEAYN 6)y ~ —a, 4 %
O oo 2.4602n + (2 + 420 + 6

“and so on, The mode of formation is gelf-

are umquely determined
ave

I
A +2) " 24@n £ 2)@m 14y
The factor g, is arbitrary and it ig customary to put

. 1
R vy

evident and the eocllicicnts
50 long as # is not » negative integer. We

i
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{}n transposing a factor we have
. 28 )

xﬂ
%Pm+¢A uw+% A@nt Ente) T

(1 Jufe)=

An alternative form is

I‘(n—}—]) Lin+1) 1.3n+ 1}n+ 2}
'This J (%) is known as the Bessel Funetion of the First Kind, o{ r}rdpr
#. In the case of integral orders the ['(» + 1) can be rep]ae;e&'by %!,
If ¢ is a zero, so that J 4{c) = 0, then J(—¢) is obviously, &erp and no
particular interest attaches to ncgative zeros. We 1:3 oééed to show
that J,(z) comes in the catcgory of cylinder functignd. )

The general or (r 4 1)th term can be written
\

( — y@g=)m® r < 0\1 5
T + 1T + 7+ 1) v

Hence the gencral term of wf () —|— aan’('r) 18
0

I+ Ol +r -
This is the {+ 4 1)th ter,Q\O%'xJ a—1(%), 80 that
(3) SO ad ) =y,

) AL L ) -isdr
{ﬂ_]_(q—i_g)} Pir+ 1)1"%—}—3‘]

\ J
corresponding t({t‘he recurrence formula 3-1{3) in the lagt chapter.

The whole of the rPsults proved for cylinder functions can therefore

be apphe({’% . Thus

4:}\ Ay — ol == ad g,
—} Jrz—l — J‘n+1 = 2Jﬂ.!,
2n
(6) Jn—l + Jﬂ+]_ = .’,U_ Jm

) LTy =edu), D) = e ),

®) o fz), {ond )} = 2, (e),

(9) Jy=dy =—Jy
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and so on. In particular, if » = § we have

at 22 at ] (-‘_} >% .
=l — T T sina.
(10} Jy(z) L 2.3-?"2.4.3.5 [ sinae

Since Bessel's equation is unaltered if —n replaces », we conclude
that J_.{(z) is equally a solution. The factor ouiside the bracket

13 enough to show that it is not a mere numerical multiple of o {2
it is accordingly an independent solution and the general soliution 14
¥= AJﬂ(w) + B'}—?:(x)' ) ( \".\

This breaks down when » is an integer, for J, and J_,, il dfot then
linearly independent; in fact we now know, in accorda.nce}viﬁ] cylinder
funetions, that J_, = ( — »nJ,. This result is by, né Means evident
from the series obtained above and the explanatﬁoﬁ 15 ag Tollows.

Formally we have N\
J (o) A
__ o {1_ e O (e 1
Pnt DU Hn + ) B —n T3

Just ag every denominator after, the second term contains the factor
(—#n+2), so overy denominator after the sth term contuins the
factor (—n 4 r); and ultifately, every denominator after tle nth
term cor}ta.ins the factory(Dn 1 #). This tendency for the terms to
become infinite is nullified by the external factor I(—n - 1) whch
18 itself infinite, Aggortingly, the first % terms are annihilated and the
reader ean convinge’ himself that the rest of the serics behaves like
J ﬂ(x.). The trgublesome question of the second independent solution
for mtegrfb&iﬂérs will be taken up later in the book,

42, Bgﬁéviour at the origin,
m% aTe NOW in a position to examine the nafure of the function at
El{g (mgm. Bvidently f?om the series we have J #{0) = 0 for all positive
(i)f‘;f;, ml:'d thﬁ sarae 15 true for negative integral orders sinee J_, =
the Sig’; beiojf athnteg?tge non-mtegv_:al orders, J_,(0) tends to infinity,
in » is odd: gofha o - b, 1.e. negative if the greatest integer
» OMIErWIse positive. Thig frequently bars the use of the

fanction of negative non-integral order in Physical problems of the

type i i
YD where. soraething has to be finite ot the origin. The function of
2ero order is unique; fop since

o) T — 1 — i
(Q’J) L (E‘T’) + @)E ey
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we have Jo{0) = 1. Hence the function J,(z) cither passes through
the origin or goes to infinity, with the single exception of the zero
order, which crosses the axis at a height unity (fig. b).

J

Fig. 5.—March of /o, /) and /; near the origin
7o and Sy simultanecusly zero at A and B8 QL &

4:3. The zeros. O

Knowing that J,(#) has an infinity of 26108 which, for positive
crders, start with the origin, we can exetsPlify some of our previous
work, Thus it was proved that if the order 1s less than 4, the inferval
betaween zeros approaches o from belplw. The following brief table
gives the approximate values of ;Eé‘ﬁrst five roots of Jy(#) and the
eovresponding differences. Ny '

Root 94048  HEWL 86537 117915 140309
Difference SR samT 31 915w

Alternatively if the Order is greater than 1 the interval approaches =
from above. The,édrmesponding table for Jolx) st

Root (280802 97610 130152 162235 104094
DifircytdD) 39509 32542 32083 1800

We havedproved that the first positive zero is greater than n; but we
ca«njn}pmve on this by showing that the first positive zero steadily
iMepbases with the order. For positive n, m put w == atd o, v = 2t
s0 that as previously by 3-5(1}
_ dp?
w1 u(l —+ 1~ ) =0,

T 4g?

1 — 4m?
e[l ) =0,
v 1( + i )

uv
(s — w") 4+ — (m* —u%) = 0.
P
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It is now legitimate to use the origin as the lower limit o : ntegration,
' a w90
e — uy’ :nz-—mzf—d:c.
|: ¢ v :Io ( ) 0 x?

Assuming that v vanishes at « whilst v is still positive, eensideration
of sign shows that m is greater than # and the function of higher order
reaches its first zero later. The tables give the first zero for the corre-
sponding order as: N\

- Order ] 1 2 3 4 0\5\’
Zeo 2405 3832 5136 6380 T-5se bl
4-4. Relation between the golutionsg, “'(n.’;:
If 41, gy are independent solutions of g L g,{){(tr) = o) = 0,
we have by 2-5(1) &

W=y = A exp{— [fip)dr},
In the case of Bessel’s equation with f(z) ::”:p\f the relation hecomes

Jod o~ T ods =4,
RN z

We can determine the constantifrom the series for the four functions

involved. The form of the auswer being known, only the leading terms
need be considered, Thisgives

I ﬂl\;"_” _ # i
R SR B T N v

Since I'(n - 1)\:7%?&:1“{13) this becomes by 17(2)
\v

O =2 9
- z‘.\\ I‘_‘_‘—'——-—(n)[,{l - n) = — 7; M.
Us ey
a)o 9
"‘\\ JHJ_-“! o J"’J__ﬂ = 2 ;
\ 3 o 81N #ar.

4-5. The orthogonal property.

Let u — Julaz), v = J.(B) so that by 3-6(1}

r
o U n?
LA Sl Iy . S ¥ =0
z x2 ’

v"+%+(ﬁh“2)ﬂ:o.

a2
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An integration after eliminating n gives

(a2 — p¥)fauvdr = a{uy’ — u'p).
The right side certainly vanishes at the lower limit zero, provided
9 - 1 = — 1, a stipulation which ensures the integral being con-
vergent. it will vanish at an upper limit of unity if thiz makes both
# and v vauish, or

I ofe) =0 = J,(B). O
This means that « and 8 are two zeros of J,(z). Replacing thew) by
¢ €5 (4wo of the zeros in question) we have . O
1 R N
(1) [ el e fe)de =0 (D

This may be expressed by saying that the family ot functions ¥/ ,(cx)
is orthogonal when the c, are the zeros of J (@), he property is useful
in expansions, just as the corresponding property for trigonometrical
functicns is useful in Fourier serics, ) :

4-6. Lommel integrals. N

It 15 convenlent to treab hete certain integrals invelving Bessel
functions and associated wibh'the name of E. ¢. J. von Lommel, Using
the notation of the pr \«wu,s paragraph, but discarding the assumption
that o, 8 are zeros o/, («}, we have

(1) {e*— ,%)]::::J Sax)d o By de
\O" — of BT o) (B} — o () o( B},

O\
wherefthe dashes denote differentiation with respect to the argument
and(iot with respect to . The right side can evidently be thrown
futd divers forms in virtue of the recurrence formulee,
As g particular case we have

@) (@ —B) [ o7 el (o) de = BT (@) (B) — T @MulB)

An immediate application is to show that J (&) carmot have a pomplex
zero. Wor if p + 4 is a complex zero, call it o and let 8 denote the
conjugate complex p — 7¢, which must also be a zero. The right side
of the last equation is then zero by hypothesis; but the integrand
contains the product of two conjugate complex funetions, which must
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necessarily be positive. The contradiction establishes {hat J 2{%) has
. 0o complex zero.

A companion result can be obtained by multiplying the equation
for # by 2224, Thus

288" + 20’2 4 Qaatun’ — InBun’ = (.

Since
; (#*2) = 2u%'w”’ L a2,
& A ¢
(\)
. . . ,~~§\\ /
Integration by parts gives O
a2t ot — 22 — 942 Jrutdz, ) N\
whenee K70
Ll PRI @ i
) ol aie =3 (1~ V7 200y 15 J
: | o O

: P\ _

In parallel with the foregoing we have he “‘tase where the a-rgi
ments are the same bub the orders different’ Let w = J, (ax), v=
Jm(az) so that W\

TR Y
1 V2
Wit w4 (@ T Yu =,
7 :

Sy Z?

=y &x

/N ) ht 2
o (a2 - ﬁl—) v==0.
From these we derives, N

a{u'"y —-w)’?') F (W — w'y L (m? — n2) ?;:’ -0,
whence "\*'\

) %,{\ ~/ {m2 — #?) wy dr — w(uy’ — w'v),
or, i.\’jz" z

(};}@}12 —~ n?) f 1y o)

2! O 02 dr = el o) ) — T T )

Here again the Tecurrence formugls
Another frujtfy] method of ing

mel, may he Ulnstrateq by oxam
4-1(7)

are capable of producing new fg.l’rﬂs—
egrating products, also due to Tom-
Ples.  Bearing in mind the formula

¥

R+1x

E%. {ang n) = —gn]
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we differentiate the identity
wd dy = o e T Y )
and derive

:Ed (d (F) = (r + 4jom = g — (I ols + J 1S o)-
L

Similarly, using the companion formula on the identity

ard ol , = a7 8w Nt )
we derive ¢ \ \

N

-L-Ed' (27 oo ) = (7 — 6)ar= Wely+ e §CF }3 +J J"‘) \}
it

F 4 "\ '
R

d VY
o (ot ols + I )} = ol + 97T - 6T )

By addition,

\\l
Since # Is at our choice, ¥ = 6 gives ¢ ’;"
10fad WJode = m“£ = g 1),
whilst + = —4 gives 3 ,.; N

10z 87, Jad?'{v —x—i(Jqu + Jo T
Ag an example wher t{{é «6rders are equal, consider
2 = o8,

whence \ \,)
Slmﬂar]y {\
™ ard 2 = o -8(ad ),

é.\ N
wh\e)\;)e,

d
l_i_T{mTJSE} — (?, - 6)$r_.1J32 - 2'$rJ2'Iu-
By addition, '

: .
5 I+ IO = w2 {r + OTE - (r— 6)TF),
Hence
10[25 2 dw == a8(J,2 4 J.2),
10fu5] 2de = —ar4J,2 L J 2.
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EXERCISES

1. Prove that the indicial equation for a®y” + 2y’ 4 (22 — 22 = N g r2 o= p?
and deduce the series for J,(a).

2. Verify that the second root of the indicjal equation in the texi y == — 2,
leads to the series for J_ alz).
3. Verlfy that the expansion for J{2) i8 convergent for all vales of . Proves

that it is sheolutely convergent.
4. Prove that the solution of Bessel's equation is A. T, - BJ f ”,-._ ¢\ \

5. Prove from the serics that J,, can have no purely i imaginary ?em

6. Prave that J,’(z) has no complex zero. Trove further tha,t‘a.f bt

cannot have & complex zero, [Assume that o, £ are c()n]ugq{e\comp'l X Zeros
end eliminate a, b,]

7. J~§fﬂi) = (T%:)%cosx, m(g:) = (%)!(s_m_x_ f\ x) '

2\1 S\
Isnl®) = [ =-)( = sing — 2% and evalua.te for the orders 21, - -21.
T e £\

Einsny RS

8 Jod i T A O
Sinnag o
Jn"r—nhl‘{—J o, 1——2—7&—:&’

9. I 2 ig a positive integer ~\

Y wle) = \g)\ \/ 2 d(x:)n “"mf)’

T (i"“" \/ d(y (wsf)'

d
0 % {x% ) = Jebe-nr, o),

d
"(a;.{me (b2} = koptnti)a—t ool k),
w\ y

4
\ ) I {x—““Jﬂka“}} — Foepl=n)a— -3, wilkaa),

Jai= s
mIJ Y

2 sinng 1€ 7 J

13. fﬂ NV = (T ) + T 2y,
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14 f 2t Betde A2 i
— -f_»f;-'_:!('-r) - J;s-.-iali‘{‘”'

'It."'[u—.l{."x]‘}ﬂ-}-l[ m) = Jn [ l(g‘}'lﬂ' if '?‘)}'
.

: i s en clse?
¢ G eve zerus of 0 J, 00 <L DO (8 awd wh

The integral is %

N ET W ¥ 3

16. f.cf.,.f(;e::e:' ! ) — of,_ L .
[ A
i {
19, If m o+ B A RIOTC T N A
13 jeA P T or e ‘J} « N
: ; Pyl == — o ST fad e — ) e
o e - Jo et by -
.]0 E Jm-\:x.x,l-:{”\\ =S R R e R e ] ¢ N\
Deduce by o limiting provess ,\ 4,
13 = b N )
Z it o) )
fu S o) da )

H  FIR
18. By means of the formuvia for dich/

3 W

f atT o) dip = T gl 4 @@t - 2607

19, Erlablish the reduei:

M1 T i fend ooy
fx P e

20, Prove that tho scd

pildd (Vi) = BT,

Pl — memd

21, Pind the genoral ¢

22 Welnawmsaf J, o

1
2 jﬂ ad o
i

n
the origin, A\ 4

23, IF 61, B\Ee,, do =
of Jy, the adigin exceptod, Freve st e inberval d, - o) #teadily incereases with
7, and/thad/the inierval Gz = stondiny decrases A partind verification is
aﬂohd}d by the tablus; the first five zorog of Jyoare givenin the text and the
corresponding first five zerog of J; nre

N N , . ,
Deduce that J 3:&;4“1{6;::‘-. : TRl Terad s b exeept

Dedgowhibist d a0 &en, denote The seros

38317 THE5 10:31734 13-3237

The verification iz 3ot (o the reader, Bxtend the i)

verify by the roots of J, siven in the text, §
functions. An apphs

16471H3,

eeret to ether ordems and
stemd the theorem to the exlinder
Ation s given Jater in Chap, V1.

24 If e, ey . . are the %) when n is greater than
% prove that the inieryad rr1 - op deereases with » inoreasing.  Verify from any
roots given in the texi oy exienil the result to e¥linder functions,  [Consider
t]fm normal form of the equalion satisfied by x4, (2} and prove that the coeffi-
cient of y is an inereasing funetion of £

suceneive aeros of f




CHAPTER Vv

Applications

Q"
1. The lengthening pendulum, N

A problem in mathematical physies usually falls into #n kol
defined parts, In the first place there is some principle whith Lolds
throughout the body of the medium under discussion. Itmay be thas
the excess of heat-entry over heat-exit for an elemeijt 18 accomnied
for by a rise of temperature; or it may be that thg«a}celera.tion is the
ratio of the effective force to the mass. Whatavarit be, the nathe-
matical expression of such & principle almos:&invariably takes the
form of a differential equation, L&

In the second place there are special\conditions at the ouigli ris
and these are known as end-condit-io’ns} or more often, bomndary
conditions. A rod may be fixed apBe end and so be immune from
displacement; and 4 moving fluid¥in default of creating vacua, cun
have no velocity normal to theSealls of jtg container; and so on.

The essentig] problem theg is, 80 to solve the differential equation
that it containg arbitrary-enstants jn number sufficient to satisfy the
boundary conditiong l@qubly. Theory then usually shows that there
can be no solution dther'than this. We Propose to investigate a nuniber
of such problems which depend for their solution on Bessel functions
of the first kind\We begin with 5 relatively simple dynamical problem
that rcquire"s\' But little analysis,

component of the weight, the equation of motion being

m{rf + 274y — —mg sin
&8
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For smalf oscillations we replace sind by 6, and on substituting for 7
and 7 we have

(e + b1)d -I- 268 4- g8 = 0,

a reduced Tinear differential equation of the second order with variable
coeflicicuts, If the leading coefficient be made unity, there is a single
value of £ fur which the other coefficients become infinite. This suggests
that the c¢uation may be of Bessel’s type; but as the infinity occurs

when 4 = - - /b and not when £ = 0 we change the origin of time N
the subsvirution @ + b == b, df = dz. We then have L\
#9240 | R g O
]_ — —_— e 3 =k k2 =, %
() dr®  zds + @ b N

This is not directly comparable with Bessel’s equat-'iafxi’nd one can
spercl el time seeking the necessary transformafion’ that converts
the ane inro the other. The readiest method is{;g;compare with the

$

general lorn 3:6(2), We thus deduce A
AN
1—-20=9, (Bya)2=%) al =nhA,
TR

a=—% =} n=zxl
SV B = 2k,

Since .7, is not different fzdu J, exeept for sign, we can take as a
. . . %
limited solution ’

¢ ’\\,.
- AV (2R,

The constant A.ré:ffz&ns arbitrary since the oscillations are merely
deseribed ag sn’,&ﬁ"without particularizing. We can find condit‘iona
under whieh(this solution is valid hy going to the initial conditions.
With £ Nt have r = a, & = ajfb, so that the initial value of the
angle ‘!EI{!;}t have been

/2N

< ‘ 0, — AN/(i)Jl{E \/{ag}}.

It is not possible to say whether # is increasing or decreasing until we
know more about the constants. At a later stage, when we have dis-
eussed the second solution for integral orders, we shall be able to
discuss the problem with ampler initial conditions of length, a:mg}llar
displacement and velocity. In the meantime we append a few exercises.

(e 1:0) 5
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EXERCISES
1. Verify that the angular velocity and the angular acceleration are

Ak A2
—  Je2ket), o it Ta(Zhet),

and comparo the remark on this form in 8-6(4). \

2. It is dynamically evident that hetween two consecuiive positigx{s‘ wf ters-
porary angular rest i a singlo instant of zero displacement; angd\sonversely.
Interpret this in terms of the Bossel funetions. {There ig no Lemporsry absolute
rost sinec £ = b.) ; N

3. 1t is known thet the graphs of the three functions Jl,?\lfz, Jy eross the -
azis, from above or below, in that order. Tt is further ng\m that the weros of
any pair of the functions interlace (sce 3-8, Ex, 9}, Mupedver, from the egnation
of motion, if any one of 8, 0, § be zero the other t\y-e\];a,vc opposile sign. Prove
by the aid of a rough sketch that these statoments p}rroborat-e one another,

4. In tha ease of the ordinsry simple pendiliuh it is known that. (i) whether
the angular displacement be positive or négative, the angular accelerstion is
always dirceted to the equilibrium positiony and (i) the displacement and aceol-
cration vanish simultencoualy. In the pigése"nt- cage neither statemont holds, What
is the interpretation in termg of ttheé%el functions?

5. Prove that the angular sccdleration changes sign only once in cach swing,
and that it happens before the{Purtical position iy reached. _

6. Temporary rest is quﬁig&\-a,lent- to maximum displacement; and zero accel-
eralion corresponds to Migifium veloeity. Interprot these.

7. Eliminate thebimc from the diffcrential equation of motion and so find
a solution for O jng tbfrms of ¥.

. NS .. . .

8. Prove thdtthe time-intorval between two consecubive transits through
the vertical iy ¥(c, — &7)/4g, where ¢, ¢, are consecutive zerog of J RN
The inte; él}hemfore inereases Indefinitely.

& F;T}n the principle of angular Tomentum, thet the rate of change of
angulasmomentum equals the moment of the impressed forees, we have
N ' '

Q df . db '
\ 7 mr? = ~mgrl,
whonce

d0
2 3 = —9frode

Deduce that
oy 2ty = & [ ot (2kat) di,

10. Tt is interesting to speculate on how what one might eall the © quarter
periods ” compare with each other, Continning the notation of Ex. 8, Iot - .



APPLICATIONS &9

be corresponding consecutive zeros of S (). The quarter period for.an outward
swing frorn tho vertical 3s proportional to ¢,2 — €2, The ensuing quarter period
for the invward swing to the vertical is proportional to ¢, ,? — 4,2, and s0 on, The
sixth to tenth zoros of J(¢) taken from the tables are

19-616 22:760 25-904 28074 32-190,
The sixth &G ninth zeros of J,{i) are

21-3117 24-270 27421 30-560.,

These sk that the suceessive quarter periods, beginning with an outward ;n\c?‘&g’—
ment, are proportional to : AN
O 6014 7102 8089 9076, A\
b 72:09 81-06 91-83 101-70. AD
A\
i regnil omerges that an inward half-swing takes donger than either
g or snceeeding ontward half-swing. T sce 2o ‘physical reason for
o T know of any proof. It would be equivalehi™to showing that

The curi
the pr
thig; ner

- 3 I
F2— 6 <o — 4% > A Gt
or, .\, .
-, . R R H
& | gy > 248 47 R < 20y

N

ny

2. Vibrations of a taut srine, _

Copsider now the transy‘e??} vibrations of a tant string. The natural
direstion of the string ‘b&mg along the w-axis, consider a displaced
element: 4R of length 8s; the co-ordinates of A being z, y, those of
B are « 4 8, 3 -/ Lot T, making angle s with OX, be the tension
at 4; its components X, ¥, being to the left and downwards respee-
tively, so thaf Y = T coss, ¥ = T sing. The corresponding quan-
tities at Bére X 18X, ¥ L 8Y, T 4 87. The resultant horizontal
foree iy SX and as it is customary to assume the lengitudinal motic_m
to b&@e\g]igible, we have 83X zero. This gives X = const. = T cosy.

W/ practice the angle i is too small to be seen with the n‘aked eye,
80 it ig & legitimate approximation to replace cos by unity. This
leads to the usyal assumption that the tension is constant t-hroug]louft_
the length, At right angles to the string the resultant force upwards is
8Y == 3(T sin ). If p be the line-density, not necessarily constant, the
mass of the element is p 8s; and as its displacement is ¥, its accclera-
tion is #. This gives the equation of motion

2
PY s = 5Y =

& om L
r 8s. .
% " {T sin g{;)

2s
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As sing = dy/ds and the distinction between x and s is not worth
maldng, we have -
o2y 0%
of O
So far we have followed the routine procedure. We now Propose to
modify the problem so as to admit of treatment by Bessel functions.
N
Problem 2.—Discuss the transverse vibrations of @ nm—umﬁimi fornet
string whose line density at distance x from one end is R k).

This may be regarded as a first approximation to & Wet string in a
vertical position. The equation of motion is - (¥

Py _p &y
i Y R
it T A+ &)

On the ground that any periodic varfabion of the displacement with
time can be expressed in a Fourier seried we write

— : '}32.9’ . 2 s
Y= usin(pt + gl Ve == PR sIn(pi + ),

This int.roduces 8 nurrl}s'ér 2 whose different valnes determine the
frequencies of the v.a.Qbu:’s harmonics. The equation of motion is now

N o pPp
Q) iz + T (1+ kx)u = 0,

A slight modification is required to achieve & tractable form; we put

NN Lt ke =le, do=ds,
whente
PR \ i g2 .
Y C L g2 P b
AN g +p 7 kan == 0,

The equation is in the normal form, 50 if it turns out to be soluble in
terms of Bessel functions they will contan the factor 2%, Comparing
as before with the general standard we have by 3:6(2)

S 3
a’___-QL’ y:2_3 ﬂ':__%:

2:%%:—_ 2.P == £ Pk
B ) :nz-,k, B—ép\/(?).
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A solution 1s therefore
w = AT 8" 4 BbT_ (B,

It ramains to determine the conslants 4 and B from the fact that
both ends are fastened, Taking the origin at the left end of the string,
we have as end-conditions

1
=) =y = L=_
& Yo=Y -
=4 y=0=u z:(%—i—)\) O\
These give g O
0 = AJ (L") + BI (LK), K ("’g
aned
L 2
0= AJk{ﬁ(T‘ T }.) ] s BJ__Q{B( 5 A) ]

& ‘7\\

Putting for brevity \ v
B = (L R

the elimination of A, B gives '. )

J%(GJJ_‘ (?ac‘)r; J. e} y(ne).

The number » is known ff@}n the conditions of the problem. The
various values of ¢ stLh@mc the corresponding values of 8, and these
In turn determine p allg the possible frequencies. This is 2 fair sample
of the type of pnf)b]eem one encounters, and all numerical work in
connexion withrib-depends on our ability to solve the transcendental
equation fo . \Tablgs of the fanection of order L are available and the
solution of™a ‘transcendental equation is & matter of approximation,
by Vewtun 8 or some similar method; but the details of the procedure
lie oulude our scope,
\U' we write
F(@) = flnw) = J {2}

the graph of y = f(#) has the zeros of J,, When J_; passes through
a zero, the graph switches from + @ to —oo, or conversely. The
graph accordingly looks somewhat akin to the graph of tanz. The
graph of i = f(nx) is the same except that therc is horizontal magni-
fieation to scale n. Tt follows that the equation for ¢ has an mﬁmt) of
voots, as a rough sketch will show. The ratio 4/B is therefore deter-
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minate; but one of ther remains arbitrary, The most general sclsilon
of the partial differential equation for the displacement is

y = w3 sin(pt -+ 6.} + o) sin(pg ) ... .

Such constants as are still present can theorctically be determined to
conform with initial conditions of shape and veloeity,

It remains o examine the question of nodes. The displacement g,
and consequently u, is permanently zero if

TE B JAY _ Jye)
J_}( ﬁzHaQJ

e N

AT T T R\

For a permissible value of ¢ the fraction on the right is aod,eﬁlﬁte -
ber. The function on the left, as already explained, ramges from - oo
t0 — oo and therefore takes all intermediate values répeatedly, so that
there will be nodes when the vibration excecds. the gravest node in
frequency, ' : ' Y,

%4
W

EPPAN
EXERCISES N
1. Taking the line density as e(l + kit pr"dve that the solution depends on

Hy(ee), B2 oy (£)
Q T
with the corresponding functiondDg negafive order., Deduce the equation which
determines the possible fmqqen?ﬁes.
2. Investigate the praPleX when the line density is p(l + k2)?, showing
that the solution depeds oh functions of ordor Z —L
3. When the liné:\'density ig p(1 + k)t the necessary functions are of order
2 P

2 _
31

2. 3
4. 8olve t-];{ Aroblem when the density is proportional to 2# and the ends
are defined\by 2 — Ay, Ao

5. Pra;wo\t t the ease whore the law is p(1 ++ Ex)~2 is not soluble in terms of
Bessel functions. Also that the law (1 + k%)™ requires two fumetions of the
firgt{onder.

\ 6. Prove that a law of density can always be found so that a string of given
length eun vibrate in the shape (apart from scale) of any specified loop or series
of loops of & function zdS (B=z), whore u is assigned and 8 remains to be found.

5:3. Stability of g vertical wire.

. If: & straight wire be clamped vertically at its lower end, the posi-
tion 1s stable when the wire is short, A longer wire may find a more

SE?ME equilibrium in & curved position.  We propose to investigate
filns.
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Problem 3.—A wmiform wire of length A and weight w per wnit length
has its lower end clamped vertical. Discuss the condition of insta-
bilitay.

Measuring from the lower end O, consider two adjacent points
4, B such that 04 =, AB = Sz. Presuming that 4 is situated a
distance # from the vertical through O, the corresponding distance
for B is 7 - 8y. At the onset of instability, when y is small, the bend-
ing moment M at 4 is given with sufficient accuracy by M = Ely”, ~_
where E is Young's modulus for the material and [ is the moment of
inertia of the cross-section. The weight of wire above B is not sengibly,”
different from that above 4; but it acts at a shorter leverage{ )The
bending moment M 4 8M at B is accordingly slightly less(tﬁg;u that

at A and wo have Xy
T
— M — w(A — @) Sy = _%an
Pug o .x'.\\"
dy dpasy
= = = EI EINY;
(Em P’ Il"{ l?lﬂj “: .
then _ R\
M @ N
o =FRI == (A — z)p.
g Zas A

The form of this equation sifghests to an cxpericnced eye that any
: . . . €Y ;
serles solution is likely to\{{ein powers of (# — A) rather than . We
accordingly put N\ .
a

W =, do= o= R

A\ I
The equation_Begtmes

[

dp | 9
-+ ——p=0
NS dzt 4

’"\\ N/ .
It 1A the normal form and therefore if it turns out to be squbl:z in
terms of Bessel functions, they will contain the factor z%, Comparison
with the general form 3-6(2) gives

aZ%: '}’:%, '?%::[:%: ‘8;:}6-
The solution is therefore X
p = ATy + BT ().

It remains to determine the constants.
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At the upper end, = A, 2 =0 and as there is no applied couple
we have

y”ﬁO:t_i‘p:—-@

da &2
In view of previous experience it is possible to write down (1-6, Ex. 10)

% = §dbad (k™) — $BReT ("), N
It is left to the reader to verify that the series for the formet “perm
starts with a constant, whereas that for the second terms starhs with
2% Since dp/dz vanishes at z = 0, the value of the constant nst, be
zero, whence 4 is zero, At the foot of the wire, on afeoint of the
clamping, we have LV
2=0, 2=} p=0. \V
These give A0
2.\
0= B)(*J__é(khs’s)'..'\h
The only rational way of satisfying(this equation is to take the
argument kX as the first zero of J ) "This is known to be a Pproxi-
mately 1-87, In any given case wherew, ¥ and I are known, k is deter-
mined and hence ). It remaing %o add that if the wire is a ribbon or
of any cross-section other than circular, the instability occurs in the
direction of greatest flexibility and the appropriate value of J must
be chosen. &>
“I have no satigfaction in formulas,” said Lord Kelvin, “ unless
I feel their arithroetiesl magnitude—at all events when formulas are
intended for definite dynamica) or physical problems.” For a wire of
radiug # qug;o material of density p we have

N\ N\ w = mp, = 21"7”'4,-

AN N w o, 4gp 4 g
~0 — = Y2 9P = * ffgr
Ot EI ¢ ek 3-:»\X EJ

A reasonable value for £ is 2.10° tonnes/em 2, or 2¢. 10° dynes em 2

If the diameter is 1 mm. and the density iz 7-6 gr.fc.c., this gives
== 164 X 10-% and ) = 109 cm.
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REXERCISES

1. Tt states in the text that the only rational way of satisfying the condition
of stability is to take the smullest zero of J_y(x). What is the objection, if any,
to choosing »cros other than the amallest ?

2. Adopting the solution for p given in the fext, with the accompanying
valuc of dgjdz, verify that the normal form is satisfied, )

3. If the wire carrics a top weight W, prove that the greatest length for

stability depends on the first root of the equation £ "\
Jyina)zle) + J_ylma)d_gle) = 0; \\
Y32 PATAEE 4o PN
LY ) et o)
“ w " + W EI O
L
‘s & &y .\
1T p= d;r_ — dz’

N

we havo y == — [p d2 to dotermine the form of the ’fe,\ Prove by a change of
variable 1hat this is equivalent to [J_y(f) df. Theiubo al cannot be evaluated in
finite terms. )

5, Tf the wire i8 a solid of revolu$ion, the Zading + at depth @ below the t.op
being 22 and the weight ahove the section being pa”, show that the solution

4mg =N
dependﬁ on. J,J'{_:C) = 0, whore p = Fm 2
2\
O

54. Instability of the déep cantilever.

It is well known/hat a deep cantilever tends o Iateral instability,
especially if the l¢ad rides high. The reader can easily convinee him-
sell of this by.{]s,\m"g a horizontal strip of papcr carrying a paper-(%]ip
at the end ofNts upper edge. We propose o investigate this, talang
the case gfend-load on. the centre line.

4 ~\' >3
P?blglé’m 4—Discuss the instability of the deep cantilever under end-
load.

For convenience we take the @ axis to the right, y axis vertically up-
wards, the ¢z axis towards the reader, and gravity acting upwards
(fig. 6). The length of the heam being X and end-load W, the centre-
line becomes a tortuous curve which was originally the 2 axis, Any
point B on it has co-ordinates z, ¥, z and its end-point is with sullicicnt
acouracy A, y,, z,. The cross-section at B s presumed to have turned
through angle 8 clockwise when viewed from the origin.
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There are two component couples at B which we may denote by
€y, U;. Their magnitudes and direction COSInes are
Cp = Wz —2); 1, 0, 0,
Co = W(A —a); 0, 0, 1.

It is presumed that a plane section remains plane and normzi to the
centze line; the normal to the section at B thus has direction eosines

dr dy & \
ds' ds ds KoY
where ds is 2 line-element of the centre line. . O
. o N ¢
Y . W '..’“ é H

"

&z Tiz. &

AN . -
ﬁs the twwjo\per unit length is proportional to the normal torque,
we have ~
QO dz dr dé

A\ C, == ., -0 = A

.'\§ # ds T ds ds’ )
whered is g constant of proportionality dependin g on the cross-section
a{&\;ﬂie material. We can differentiate this with respect to s, whence

d dz dx d?
— 10 0,2 - 4 0
ds { ds ! ds} 4 ds?

On the grounds that » and s are scarcely distinguishable we ﬁut
ds dC, ac, dz
O

- a2

wh . — z

ence , i A4 i WA —a) s
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A line which was originally vertical on the section at B has direc-
tion cosines &, cosf, sind; or, 0, 1, @ approximately, on the grounds
that € iz small. If the couple in this direction be offset against the
corresponding bending we have

06 — W\ — a)f = —EI gif.
2

Eliminating z from these two equations we reach

g4 P L wr—ape=o.
da?

¢~ 4
2N

This iz scluble in terms of Bessel functions if’ we make some,_ninor

changes. Pat N
W2 2 l':'" ’
A—g=t do=—dt, m:k’?"f}\ ‘

whenece \

28 g =0, < x:\\'

a TP O
which is in the normal form, Compg{rgéﬁh with our standard gives
by 3-6(2) Ry

a=1 y=2 f o=} —F
The solution is therefore (AN
# :\}{i%}é(-gkzﬂ) QR ($he3).
The arbitrary constants P, ¢ remain to be determined. At the free
end » == ), t = (pFe/have no applied couple and

AN
& @ _ o=
’§~.l d I !'.k
On Ie-fgffi'ng again to 4-6 Ex. 10 we can write down
~\J o a1
AV, Cjz? = Pe"T_y(§ht) — QR y(HhE)-

Tt is casy to verify that the series for the former term begins with a
constant, whence we conelude that I is zero.
At the elamped end we have

Tables give the first zero of J_,(x) as 2-0063, so that approximately
A=2%% or 2/VE

N\
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An equivalent to the foregoing analysis is ugually accepted in toxts
on structures or materials; in practice, the tendency to instability is
ohviated by modifying the section of the beam. An alternative dis-
cussion hased on a different set of ideas will be found in Temple and
Bickley, Rayleigh’s Principle {Oxford),

Q.
O\
EXFRCISES NS ¢
Ny

L. Prove that if the load is uniformly distributed the solfitin depends on
functions of order 13, —1/8. The smailest zero is given by Jﬂ_'@-‘) = Oy m — 176,
z = 21423, AN

2. If the load varies uniformiy from zero at the frod enfl; the solution depends
on functions of arder 4-1/8. The smallest zero is gi,v{(l,‘by Jofwy= 0= —1/8,
&= 2.200, ¢4

3. Discuss the stability of the centrally loa:fl}l deep beam when hoth ends
are encastréo.  Prove that it is not fundamentally different from the cuse dis-
cussed in the text, N

“ 3
XY
NS

{

§5. Critical load for a variable strat.

One of the simplest applications of the theory of linear differential
cquations with eong g Coefficients s to the theory of struts. It is
presumed that the ¥eader has some acquaintance with this; it can be
found in numerots, texts on stractures or materials,

~The problefnyn its simplest form is best visualized as the evuili-
brium Position’ of a flat steel ribbon whese ends are joined by an in-
exte.nsib%string of natural length slightly less than that of the ribbon.
Takmg:thc line of the string as  axis and one end as origin, let y measure
Ehgw’f'te}fa-rture from the straight at any point. The couples give as the
\éfppmxu.nate: equation of equilibrium Ely"” 4 Py =<0, where P is
fhe. bension in the string, % ig Young’s modulus and 7 is the moment
of mertia of the section, [f these be taken as constants, a suitable
solurtlon Is y = 4 sinng where 4 is arbitrary and n? = P[KI,

The deflection ig certainly zero at the end where x 18 pero. Taking
./\ ag ‘the Ilengt-h of the string, the ahsence of deflection at the other end
liplies sinp) — 0, whence n} — 7 2, 87, ... . A chosen one of
thc.@fe_ dt_%term.ines % and thence P, The inforence i3 that a possible
equilibrivm pogition ;g any number of loops of a sine curve. All these
are very unstable oxcept the sj ugle Joop,
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Problem 5.— Discuss the stalnlity of a trionguler strut.

As g ilssi modification of the analysis sketched above, we assume
the ribbon ot to a triangular shape. The moment of incrtia / is then
proportiona) to the width at any point, and this in turn is propor-
tional to the distance from the vertex. Taking the length of the ribbon
as a-axis and the vertex as the origin, we can replace I by Iz, The
equation of equilibrium is then presented to us in the normal form

EHzy" + Py =10, S
The solution must contain the factor 2, and a comp&friékju with our
general slandard 3:6(2) gives o
a=t=vy n=1 =&
An acceptable solution is therefore £ x':.\\’

y = Azt] (W)

This certainly gives zero deflectiquiat’ the left where @ is zero. For
zero deflection at the right whepdl® = X we have Jy(kX!) =0, so that
EAbis a zoro of J,(@). Any parbicular zero serves to determine &, and
this in turn determines P.{The smallest zero corresponds to the stable
position of a single logh,> A configuration in several loops is theo-
retically possible butiwould be highly unstable; it corresponds to a
higher zero of J . )

When the sihbon stands in a single loop there is a single point of
maximum displacement, given by

~G

\} W _ o — yakT(hal).

et

»
A\
{ ..
e

"Thi,f}"éorresponﬂs to the theorem that between two consecutlve zZercs
\oﬁJl 18 & single zero of Jy. o
Trauslating into figures, let 25 em. be the length, 1 mm. the nm-
form thickness, 24 em. the width at the broad end. This gives I7 cal-
culated at unit distance as 8-3 10-% cm.t, Taking £ asg 2,10° gr.fom 2
and the first zero of J, as 3-8317 we have k= 0-7663 and P == 2-45 kg.
Attention is directed to the following point for future refercnoe.
The point of maximum displacement is given by Jo{kzt) = 0 and the
first admissible value is ke — 2-4048, Since kA% = 38317 we have
o/ — 0-3038. This is definitely displaced from the middle towards
the more flexible end. '
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EXERCISES

L. If the ribhon is blunt-nosed, with  — Hazl, prove that the solution s

PO
= datriet, k= (2"
¥ &2 5 (ki) N\ZF
2. If the ribbon is sharp-nosed, with I — IIx*2, prove that the solution is
P AR
= AatJ kx-}, :4(._)_ N
Y= Akl k= dyn O
e
Deduce that hetwoen two consecutive zeros of J, is a zero of J,, O

3. Prove that the eago J — Hg? is not soluble in terms of Besg;él"f’:’mnficm.
4. Tn any case where the ribbon stands in a single loop, what ¥ the Lhyaie
Justification for saying there are no inflections? Bxplain $hig By the equilibrum
equation and interpret it in terms of the Bessel functions ih any particular case,
R
5-6. Railway transition curves, Fresnel's infeguals.

It is distinetly unusual to find Bessél functions associated vwith
geometry; but the following problem iftessentially geometrical, W hen
a lacomotive rounds a curve there is&definite side-thrust on the 4o ck,
and the reaction supplies the necéssary centrifugal force. In practice
the mater is minimized by giving a super-elevation to the onter rail,
thus canting the engine inwards. So long as the running is on a streight
- track there is no centrif alMorce. Tt follows that if the straight tzack
joing on to a curve of finite radius the force jumps from zero to seme
definite value ag the Engine passcs the join. This is practically an
impulse and is defwimental both to the permanent way and to the
comfort of pagsepbers, Moreover, it means reducing speed and losing
time for thféé&ke of taking things easy, The problem therefore is so
to desigg}j@he transition curve as to avoid the necessity for reducing
speed add to ensure that the centrifugal force rises uniformly from

#6708, \ ™

e%o long as the engine runs at g constant speed it is Immaterial
WiEether the uniformity is with regard to time or space. If P be any
point on the curve, e p be the rading of curvature and s the arcual

distance, measured from some point to he specified later. Tor a con

stant speed the centrifugal force is proportional to p~, and if it is to
change at a constant rate we have

dp1
B o
s 2

Q
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The constant is given the form 252 as a matter of convenience. Hence
pt=2b%s +¢

and the constant ¢ can be eliminated by measuring the are from the
join with the straight track. Since p = ds/di we have

ﬂ = 2b%, o =8P,
ds

N
No integration constant is required. Taking the origin at the join, and

the z-axis 49 ihe straight track continued, we have N\

. AN

{ . . \ >
Y = cosp = cos(bs)?, g_fl = sing = sin(bs)2. O
P A\ )

ds
Hence o) -
R 2 = L‘. 2 ’ .
@ o= j:} cos (bs)2ds, y= fu Hln(?ff)\\fis
The change of variable bs = ¢ gives P\ ‘,\

by = f cost®dt, by Ef sin#?dt.
0 oy v

These integrals make therr a.ppez}ra;zﬁe in a subject about as far removed
from the crudities of rolling stoek as well could be; they are known as
Fresnel’s integrals and the(if)fgcur in the diffraction of light. If we put

=y, di= %ﬂ—% dit,

we have <

o 3 ;- 3 .
2\({> b = f (E) cosudu = f J_y{u) dus.
\sw’# O\ it 0

Similarly ,.Q\

e 9\t 9\t
\® af = ={{= du = | J,(u) du.
S OL T IO R

They can be evaluated by the repcated use of the recurrence relation

o, = dus — Jnr
We have in succession

?JJ;' — J—-%. - JSE’
2"75;:; = Js}ﬂ - J?ﬂ‘
Q'Jw; — J",'|f2 - Jll‘igs
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and so on. Hence by summation, since J,(®) obviously — § when
B> ®,

%J—i = Jv}' + Ja;"; + Ja.fzf -
so that

9 %
(;) bm=J§+Jarz+Jnfs+ .

The series is convergent and numerical resulis can be obtained hylihe
use of the tables. The companion result is easily shown to be (\’\
2\* o
(;) by = Js,fz + J?,ﬂz + Jll,'e + .00 A~ ‘?/
£ \\3

They are both apparently due to Lommel. Tt nge{i(}fardly Do added
that no eivil engineer could be induced to uti]izég‘uéh results in luying
out the curve. >

4D
L %
NS
/R v;
.
o\ ¢
TN
&N
“‘\‘3\;;
N\
&N\
O
"\
tw\f?s.}
(\\:}\./’
N\
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CHAPTER VI
The Second Solution; Further Applications

6-1. Tne indieial eguation.

If the series y = age” + a;27+ - . . . be substituted in Bessel’s
equation R\,
aty” oy + (2® — n?y =0, O

it follews as in 4-1 that the resulting indicial equation ig a‘f’ef: #2, The
verification is quite simple; for the coefficient of a, onsubstitution is
#{r — 1) L r — n2 This agrees with the result stafed\and the roots of
the indicial equation are r = n, — n. In general$he two solations J,
and ./_, arc independent since the one i3 ohviqﬁ;ly not a mere num-
erical multiple of the other, Exceptionallpy when » is integral, J_, is
merely J,, except possibly as regards sign, We now have to investigate
the second independent solution for ingegral orders.

Certain general propositions coueerning the indicial equation will
be mentioned here. They are;,. ’ '

(i) If the zoots of the inflicial equation are distinet and do not
differ by an integer, eacg\ 6ot leads to an independent solution.

(i) If the roots. differsby an integer, the second solution may, or
may not, contain & Jegarithmic term.

(iti) In the cade“of repeated roots, the second golution certainly
contains a Iogaxﬁ?hhlic term.

These arewpart of the theory of differential equations and mno
proofs will'bé attempted here beyond what applics to Bessel’s equation,
which,igthe almost perfect exemplar. They are already substantiated
to éf)‘n;le'extent; for the roots of the indicial equation differ by 2#, and
if 1% is not an integer then neither is , in which case the two solutions
are distinct. If 2% is an odd integer, then in general the second selution
may, or may not, contain a logarithmic term. In the case of Bessel's
equation it does not; for the functions of order half an odd integer can
be expressed in terms of sina and cosz. When 2n is an even infeger it
will appear later that the second solution of Bessel's equation does
contain a logarithmic term. Finally if = is zero the indicial equation
has a repeated root and theory states that the seeond solution must

(a150) 73 &
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contain a logarithmic term. The suggestion made mn 3-6 (for the case
y = 0) was not devoid of purpose; it can now be disclosed that the
solution in question is * log.

6-2, Equations of zero order,

We now proceed to verify the statement about zere order for
Bessel’s equation; and we begin with a method that makes the result
look plausible, From

.2 A
Jo@) =1—2=+ ... R
4 A
we have by reversion of series O
2 N
_:.l_:1+£_;_,,, O’
o) 4 ~N\
1 1, % "
Honee A@FE e 3

W

From 4-6, Ex. 4, and 2-5(2) it is known t};aﬁ':the second solution can be
expressed as o\ o
CNdz

= J g TN e S,

Y U(ﬁ)f (o) ¥

whenece we deduce that P
“ 2

y ;Jaia{logm + 8. },
\\ 4

the first term being followed by a series of ascending powers of .

It would be fedious by this method to find the actual form of the
series, Whjc}]\ig}iﬁ fact of no great use to us. The important point is
that the yalwe of y is infinite when  is zero, from which it follows that
the solufion is linearly independent of J. Tt is customary to denote it
by ¥ The presence of logz confines us to positive values of @, but
é'{\préctice this is no handieap. ,

Having given our statement an air of verisimilitude we turn to a

more Tigorous method, applying it in the first case to the equation of
zero order

rr 1 ’
¥y + P ¥ + gy ==0.
Ifweput '

C‘,,(o: == "{1— o !t —_ . }
)= @9 Tamrnmre L
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so that incidentally Cy(z) = J(w), we know from 4-1(1) that O, satisfies
Bessel's cqnation

d? 1d v
=0+ =0 1—=0 =0,
dx? V_’_:z;ci"w 1’_}_( 332> g

Differenitiating this with respect to » we have

az [ 8 1d1(d
%e'{a,;ov}+mf$0v}+(1‘9)a 0—;2 O

On equating » to zero, the right side vanishes. We conclude that\\

|
N\

v=15 00 R

plicit form of this, Write C = S Wherc S\s\tands for the series
in brackets. We then have

\\
? C, ----:z,Slocr:z: +:B ;

oy v
v“; -
oS
— - d
= Lplogz + 2"

On equating » to zero we }Lai?é
2 ¢\J a5
{— c(b} — 7o) loga + (]
It is Joft to thK p,unous to verify by logarithmic differentiation that

28] $) () (3x)* 14341 —
{Ov}yx\r( -0+ Batiy

The\r“kult

Vi) = Ty loge -+ {Aar ~SE0r 9+

w=10

is usnally associated with the name of Neumann, The full solution of
the equation of order rero is

y = AJ(x) + BY ()

and no other solution can have any form but this. We may here insert
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a remark, of no practical consequence, that in & particular form usso-
eiated with the name of Weber the values
2 2
A=—"(log2 —vy); B= "
b3 )

are taken. The number y is known as Euler’s constant; its valuo 1s
0-6772 . . . and it is defined as the limit of

1+%+%+...+i~-logw &

ag 7 approaches infinity. N\

A

6-3. Equation of integral order. ~\\

Having substantiated that the second solution of zero order eon-
tains a logarithmic term, we now proceed to fénder probable thie same
for integral orders. We can write \ N

J o) = Bar(l - a2 et £ L),

where B, 4y, @y, &c., are known comstants. We then have an gxpangion
of the form N

1 < - 5
T gj;{m_“(l + byt ot L)
Hence \\ )
' 1 ¢ 1

D g (e et )

25 :
The (n jg)%h term is a multiple of z' and hence on integration we

get a log ithmic term. If we use the series value of J,(#) in the secoud
solution,
N\
m\./ _ ’ dx
\ 3 ¥= J“(G)f;{:fﬂ(&,)_}ﬁ’

we conclude that the form is 4J ,(z} logz + S; + S,, where
- A = constant,
8, = a finite series of negative powers, .
83 = an infinitc serics of positive powers.

We do not propose to find the forms of any of these sinee they would
serve us no useful purpose. The result is denoted by Y,(x) and it
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becowes Infinite when » is zero (fig. 7). The full solution of Bessel's
egustion of integral order is

¥y= AJﬂ(x) + BYﬂ(m)}

and svery solution must be of this type.

The weakness of the above demonstration lies in our failure to
establish the presence of the multiple of z-1. However, as the geries S;
exists, we are still justified in saying that Y (z) tends to infinity as
tends to zero, Tnstead of pursuing the matter it is more profitable t6,
adopt & new outlook, Ko
O

N\

l +8)
Fig, 7.~+March of the second solution, Yalx)

\ W

Tet J,(z) he a\folution of Bessel’s equation of pon-integral order
». By diﬁ'ere;;@@ﬁbn with respect to » we have

PN 4 1d (D } ( v2)a 2y
N LA S 1—-2Y2g, =2,
,~~(,z£§fay ]"]—I—-xdzv{av I 2/ 2w %2
»\’o

Sificy Zf_y(a:) is also a solution we have similarly

d% [ 2 1d(@ v") d 2v

iy rele 1-2Y27 =g

da® [Bv J_"} ™ T dic {av "J - ( x2/ dv a2
Multiply the second of these by (—1)", where = is an integer, a‘nd sub-
tract, In order to avoid piling up formidable masses of symbolism, use
the abbreviation

Py
Y o ov
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We then have
,+;cu?,, ( )F =T, — (1)

We notice that if the non-integral » tends to the integral valuc », the
right ‘side tends to zero. Hence if F, denotes what F, becornes in
similar eircumstances, we conclude that F, is a solutmn of Hossel’s

equation, i.e.

p=sfl a1y L R e

.\“\

Q

The reason for the foregoing rather abstruse dlSGu&&iOh i partly
the matter of tabulation and partly dissatisfaction mth‘ havizg the
second solution differently defined according as the (Q'sler is integral or
not. The Ioglcal thing to do is to adopt a form ol the second solution
that holds in all circumstaneces. Various writets‘have done this, and
the corresponding functions usually go by thg}r names. The only one
that need concern us is ‘Weher’s, \S »

€08 wr.,l,(m) J_ (%)

@ Yife) = \ B v

For non-integral orders this 18 é{ridently a solution since it ig a lincar
combination of J, and J%.' TFor integral orders, cosnw = {(—1)%

sinnr = 0, so that the, fractlon takes the indeterminate form 0/0.
Resolving this in t% usual ‘way by differentiating numerator and

denominator withrespect to v, we have
A

) \—rr ginvad, -+ [cos yr 2. J, — 2 J_,,}
\“\ y _ v dv

A\ T cosrm

_Th&Tesult shows that as v approaches n the fraction becomes F,fm
and is accordingly a solution of Bessel’s equation,

Much of the foregoing can be laid aside. All that matters in prac-
tice is that there is a second solution ¥ ,(x) that becomes infinite at
13he origin, It may be tabulated under the name of Weber or Neumnann
Just as logarithms may be tabulated under the name of Briggs or
Napier, That is immaterial so long as they are not confounded in the
same calculation. When we meet a Besscl equation of order 7, be the
order integral or not, we write down the solution as 4 = 4J, + BYx,
and go on from there,
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6-4. Becurrence formulee.

A conscquence of Weber’s definition is that ¥, obeys the same
recirence formulke as J,, which is a great advantage. If we multiply
the formule

d 14 T d y W
% {:"3 JV} = Jv—l; {E {x J—v} == J—v-i—l

respectively by cob v, cosec v and subtract, we have (N

. d . A +

{1} — Y, ) =Y . (\D

3 da: { v} 1 N ,
This sstablishes that Y, is a cylinder function and the regt follows.

_ 2 LV

\q) Yv—l + Yr-f—l = Ey }/w \ \

{3) Yp—l — Yv+1 = 2Y=r’$:i\\':

{_“E} xyv’ _}d pY.v = ‘?‘:‘}'Zv;’ll

{'I‘j) va’ - VYV '_"T"—“_“:{‘I’.}ry-l-]’

aud =0 on. The proof is based onh® agsumption of non-integral order;
but; if we appeal to the principleidf continuity we can apply the results
to infegral orders. A

Since ¥, is a cylindéz:fanctiﬂn, we conelude that it has an infinity
of zeros, their interva}\\tendmg to =; and as z¥J, and #?Y, are two
golutions of the .-s;mie normal form, we see from 2-9 that their zeros
mugt interlace, Moteover, there must be a relation of the form

50 7%, =4
JY, —J)Y, ==
’\m" ¥ ¥ ¥ x
(39{3“3?6;‘ Ex. 10). Using Weber’s definition of ¥, and its differential
- £officient, we have
(6) JY —d)Y, =0, —JJ) cosecvr

p

s
the last step being from 4-4(1). It must be poinfed ont that the right
side may take a different value if some gecond solution other than
Weber's is used. This hag to be borbe in mind when consulting other
boolzs.



&0 APPLIED BESSEL FUNCTLONS

EXERCISES
* 1. Establish the following rosults, which frequently oceur in pliyaical prob-
lems:
. 2
(]) JnYMI - ﬂ,—!—lYn = ?E’
' ” . 2 n
(2} S, ¥," — I Yy = - N
- vy gy 2 e O\
(8) J, ¥, — J.°F, Z}Eﬁ(l_ﬁ)’ :'<\~.
! HE " r 2 3?1’2 ‘:" N
) LY — 1Y = Tt (Eé' - 1)' “.< 3
d ‘€
2. o Y (k) = Had- Y, (kab), NO)

d : /
7o T ()} = — P Y (hat).
. ¢ x\ v

B g T fl)) = Baa®0emY, (et
. X & .”:: 3

7 (Y (k) = —kaxtl—”?.{fi’m. ((Ex=),

s
™S

4 Yir) = —J_4{x)= u(é)‘géosx,

R\
¥_ylw) = Jyx} =\§J kE&in:z:.

f
N

»

'

6:5. The len t‘gﬁﬂmg pendulum (resumed).

Now ‘ghi?r we are in possession of a second solution, we can con-
tinue' ith “the applications. We revert to the problem of the length-
enjrggtp\ndulum. The equation of motion, 51(1),

.»\‘v

~\J df |, 246, &

} 2L =0
v i?  wds ' @ ’
has the solution

8 = Ax—tJ (2kxt) + BtV (2ket),
whence :

a0 Ak o Bk oo,

@ = gp = = =k — = Y 0ke),
1With two constants at our disposal we can satisfy two initial condi-
tions. Suppose we take the origin of time when the angular velocity s
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temporarily zero.  Let the ecorresponding angular displacement be
B. e then have
t=10, r==q,

@:0, 3‘3:6—;, ;, ()
dt

For the determination of 4, B we have

B(1) = 4700+ BT, 2=t R
0 — AJ,(0) + BY, (). A ~
In virtue of the relation 6-4, Bx. 1, (s '
HNT) =TT = — 2, (K

we Jdodnce

a=—19(2) 10 B_M@ iy

Henge the angnlar displacement at any sub‘sequcnt time is given by

_2}_1% (”"?) =, /\) Yl(zmj o A (2R},

W

X“Q\
£\

\\ EXERCISES

1. Frove that the tm:l.es of zero displacement arve given by the roots of the
oquation »,

T )
AN\ YN Y2kl
and t-hat“tﬁgf'instant-s of temporary rost are given by the roots of the equation
W Te0) _ Ju2hat)
N Yo(n)  ¥y(2kat)

What is the significance of the obvious root, » = 2kx!?

2, Investigate the problam taking the origin of time at the Instant when the
bob is passing the vertical with angular veloeily w.

3. The angular digplacement and veloeity are given in the text, Caleulate
the angular acceleration, substitute all three in the equation of motion and
deduce the recurrenco formula. :

4. The radial velocity iz known to be constant; calculate the transverse
velocity,
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&. In what circumstances would the solution depend on the funetion ¥ with-
out J?

6. Prove that the angular dieplacement and the lineal lateral :iisplacement
do not reach maxima simrultaneonsly.

7. Assign two reasons why fhe successive maximum angular ‘?Jw:-}ztccments
decrease. [The cage of lineal displacements has to be loft open for thu moment;
it depends on the ultimate behaviour of the eylinder function b (e

8. Prove that the constant 4 has the physieal dimensions 7'%, ~

8:6. Motion of a variable mass. !\

- . . NS 7,
Problem 5—The rectilineal motion of a variable mass wilea vuriable

Joree. N

Suppose a mass moves along OX under an attra,chbn to the origin.
If the force per unit mass is proportional to the dintance and we equate
it to the rate of change of linear momentum, syehave

R
d ( dx) s SRz,
i/ D

whete ¢? is the constant of prupqr’uj&imlity. Hence
1 &ﬂ‘;
bl e =10.
de® Lo e dt +

o‘ ‘
Supposge further thatﬂﬁ mass suffers abrasion or any form of attenna-
tion so that its mwrmtudc at time # 15 m = (o - 5)-1, Thus the mass,

initially %, ig\gBymptotic to zero. Then by logarithmic differentia-

tion, I
7N\

N 1 dm b
R m i @+ bt

\. the equation of motion becomes
dZx b du

# axma 0

Make the substitution

a+b=10bs dt—=dz,
and we have
d2r  ldx

T red S
G2 zdz—]—c.b-—().



1T'HE SECOND SOLUTION; FURTHER AFPPLICATIONS 83

Cowrparison with our general form 3-6(2) gives
l—2a=—1, ny=aqa, 2{y—1)=0, By=c,
whenee
a=1l=y=mn B=oq
The sclution is
@ = Azt (02} 1 Bz¥(cz),
and the motion is oscillatory. The velocity at any instant is given by ~
de  dz A

a T = Az yez) +- Bez ¥ fez). . \' \\

To determine the two constants from assigned conditions, let LLS sup—
pose that when £ is zero the mass is at temporary rest ats distance h
from the origin. This gives 2, = a/b and ~\

ATN) + BY, (N =0, A="00

T 4 BY, () = ’;b : O
In viriue of the relation 6-4, Ex. 1, ”, v
TOVYo) — T TA0) = 2 =
..,\
lmi\iz\ B = —dmchd o A).
Buppose we rcquu:c; the time to reach the origin; then » = 0 gives
e _ B 34N
\ / ¥,(ez) 4 Yo()‘)
The Fraotml'r on the right is then a definite number, s say, Hence
) D J1(ca} — s¥4(02) = 0.

2h

7O

these solve to

Here the left side is a cylinder function and there is therefore an in-
finite number of suitable values of ¢z. Their interval is greater than
7 and gradually tends to it. The time interval between successive
transits through the origin tends to the value w/e, as in simple har-
monic motion. In view of the fact that the foree per umit mass is
proportional to the distance, it would be inferesting to see an argu-
ment, based on first principles, explaining the apparent anomaly that
the motion is not siniple harmonic. The total mass varies; but the



84 ' APPLIED BESSEL FUNCTIONS

total force varies in the same ratio. Having disposed of that frifle,
Tollow it up by explaining why the amplitude continually increases,
To prove this lagt statement-, multiply the equation of motion

2r =1
a-[~b - ¢fx

by 24 and integrate. This gives
I:xﬂ — 2b j d.! 4 [('2,!,21 8

Taking a, 8 as times of {emporary rest, not necessarily cQﬂ\"d“uTive,
we dlspose of the first term. The integrand is certa1ulv~ JBositive and
hence x is greater at B than at a. The oscillation i Increases in araplitnde,
likke a vibration picking up on resonance. “\

Another eurious feature of the motion is that the times for half-
swings inward to the origin continually 1ncreéﬁe but the times for
half-swings away from the origin contmuﬁ{ly decreage. Tois s the
-problem referred to in 4-6, Ex. 23. To prove it, let 0, ¢y, ¢, &o., denote
the values of ez for zero velocity, ancl let dy, dy, &c., denote the values
for zero digplacement. We then h~:we

dpyy — 4, >,1'r, Cp — Croy << T,
whenee by subtraction :mg
oy —¢) B =6, ) > 0, dopy— ;> dr— e,y
Bimilarly from \
we deduoce \.\“\ G hasm bdaET
. ’."Otsr —d) = (g — ) <0, 6 —dp <oy —dpge
{Lmugh sketch shows that this establishes our contention,
O
EXERCISES

. L Derive the acceleration by differcntiating tho velocity and check by the
equation of motion.

2. In simple harmonic motion, when the displacement is zero the veloeity
is maximum and the acceloration changes mgn Prove that in the present problem
this does not hold.

‘A]SD in simple harmonie motion the displacement and the acceleration reach
their maxima simultaneously. Does this hold in the present casc?
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A Dofermine the constants if initially the body is passing through the origin
with city #.

4. Aceorling to the principles of dymamics, the momentum of the body
when passing through the origin equals the time intogral of the foree sines the
previons reat position, How doeg this work out in terms of the Bessel functions ?

%, Frxamine the problem when the wass at time £ is (¢ 4 bf)3,
6. ¥rove that the kinetic energy of the body when passing the origin is pro-
porticnal to a{dJf (o) + BY («}}?, where « iz a value of ¢z corresponding tox = 0.

6:7. Longitudinal vibrations of a har. Ko
Droblene 6.—Discuss the longitudinal vibrations in o tapered baa‘ >

Imagine a long thin metal bar to ocoupy a finite part of ’LhP z-axis
from the origin. As the result of a longitudinal blow,, fhe scetion 4
which was originally at distance @ is displaced t0{Qjstance x —+ .
Note that w is not necessarily small since the hax’hay have moved
bodily, Similarly the section B, originally at & 8z, is displaced a
distance + du. The cxtension of the elemexﬂs S& is thus Su, so that
the strain is du /0w and the stress is E du/ox, & vhere F is Young’s modulus.
The convention of sign is fixed by the »stress heing tensile when 8w is
posiiive, 2

If a be the area of cross- sectlon, A and F the force acting on it,

we have p,
| » im}? =

a\
Similarly the foree ;wt:{aig on the section Bis F 4 8F. The resultant
to the right is A\

O : P
AT er=T =2 {aE E?}am.
A\ 0w g o

The mas8ef the element 4B is padx if p is the density; and as jts
accelqizﬁ’-ion 18 0% /ié? we have the equation of motion

pa 8y 9 {aE‘ 6}}

FZY

The foregoing assumes that all points of any normal cross-section
simultaneously suffer the same displacement. It is usually customary
further to assume that B, p and a are constants. The equation then
reduces to

G, 0%, . E

o oa? P
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This equation has solutions of the type

o5 (O
w=2dA . nzx . knl
sin 8N

The choice of sine or cosine is determined by the mode of suppost. The
length of the bar then determines n; and the initial conditicns aater-
mine 4.  Thus if both ends of the bar of length A are fixed, =o that
1 — O both when # = 0 and when @ = A, a suitable solution is < {\

1 == 2 sinna(A coskni + B einknt), L\
'S
provided that sinnd = 0. This gives wA = @, 2m, 3m, . . & Mithe per-
~ missible values of # are thus determined, and the conghants 4, 2 are
chosen fo suit given initial conditions of motion andddisplacement.
The above cursory discussion does not involvéBessel functiors and
fuller treatment on these lines is to be found intéxts on sound. If we
abandon the uniformity of section whilst il treating E and p as
Y , AN
constants, the equation of motion becomps )
p o 1‘8.';[9”3-1;}
Eor _aexl| oz}
On the grounds that Iongitndiﬁé-l vibration is possible we wrile %=
X sin(pt -|- ¢), where X ig{‘ndepend.unt of #. The equation becowee

)
#X xhdu dX »p
— X “-—_—_— A kzX — ;2 = —
A2y ade dz 0 B=
If the bar is sEg,}\ltly tapered we can write

:”\.Qo
AV, a(l + 3) da_o lda_ 1
A\ B de B ads o+ f
whénce

_on\\: . 7 dEIX 1 dX .

3 hndlaal A Y

N\ I Pm—JerJrﬁuX 0.
With the slight modilication

2+ B=2z drv=4dz,
wa have
@2X  1dX
A, 2% ey
dz?  z dz - X =0,
80 that

X = Adykz) + BY (k2.
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As an illustration we suppose the left end to be fixed and the right
end to be free. Af the left we have the conditions

u=0=X=uw z=24
Hence

0 = 4J(kB) + BY,(kS).
At tlie free end there can be no stress and we have the conditions

8 dX dX
=2 z=2A+ B %:ozaz@, O\
.\:\'

0= Al {kA+ B} + BL0+ B} O

The free end of the bar, a place of zero stress, is a place,ef maximum
moveinent, a loop. The foregoing is in line with the{faet that the
mazima of Jy and Y, are located by the zeros of A and ¥, respec-
tivelv. The elimination of the ratio 4/B gives _ \)

JokB) _ Ji{R(A + BR\"
Yo(k8)  Yi{k(A HB)Y

The firat root of this equation in & cqxtgééponds to a stress distribution
which is part of a loop of the curwesAd (kz) + BY (kz), with a zero
at the right. The higher roots give distributions with one or more
stress-nodes, there being alwiys one at the right. In each case the
stress at any polnt varies Si\nﬁsoidally with the time.

whenea

N
L D

\%
W EXERCISES
2 ,
1, 1F the tap \d bar in the fext be fixed at both ends, prove that the stress
distribution ..ie'}letermined by the roota of the equafion
AN TolkB) _ Jolk(A+ B}
N Yolkp)  Tolk(r + £}

) 2

2. Tf the law of taper is @ = ol -~ 2/B)%, prove that the solution of the
fixed-free bar depends on
T008) _ o+ B)
Y 8y Y kn + BYY

3. Prove that the problem of the longitudinal vibrations in a fapered bar
is soluble by Bessol functions when the Iaw of tapering i ¢ = afl + z/AY™, where
"0 is any real numhber, positive or negative.

Tnvestigate the case where m = .
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6-8. The vibrating membrane.
Problem 1.—The vibrations of @ strelched membrane.

A concise history of English literature could be pardoned for omit-
ting the name of John Clare; but the complete omission of Shake-
speare could hardly be condoned. Similarly from a survey of the
relevant literature it appears that even the most cursory treatment of
Bessel functions cannot avoid the vibrating membrane. Tt wasefirst
discugsed nearly two eenturies ago by L. Kuler in 1764; it Lus\been
heavily belaboured in innumerable texthooks ever since. ()

The reader is aware that a stretched membrane, such &% drum or
tambourine, is capable of vibrating when tapped. The'préhiem is the
two-dimensional analogue of the vibrating stzing ardysimilar zssump-
tions are made for effecting & solution. A menthrane difiers from a
disc as a string differs from a rod in that flexiwal zigidity, shear and
bending are taken as negligible. The \db;a&ns are presunicd due to
the tension applied to the material. N

The equilibrium position of the Membrane is taken as the hori-
zontal plane and gravity is ignoredy - During movement let @ be the
upward displacement of a p'qi&it’ ‘whose co-ordinates are ctherwlse
7, 8. Consider the element limited by the arcs of radii # and 7 + dr,
and the radii defined by fand 6 4 89. Tf T be the tension per unit
length along the edge #3¢, the force on this edge is ¥ = ¥y 58 acting
at an angle ¢ to th&ﬁorizontal. The vertically downward sowponent
of this is AN\

< o ., 0Oz
O Y = Fsing, sing = P

Y

At tﬁe@posite edge the vertically npward component is ¥ + 8Y and
thfa apward resultant is :
4 o\’ '3
\/ 2y ! oz
3 oY = - _ 8p = _"_ r =

\ 5 Or=o (Tr = or 60,

Along the edge & we similarly have

)
Fi=T8r, Y,=F, singry, singhy = 122
: rof

The upward resultant from the two 8r edges is

Wigg.? [?_; 3;} 505,
¥

o8 26
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If p be the sorface density, the mass of the element is prdrd® and its
upward acceleration is 0% /0%, As in the case of a string, and for the
same reason, it Is customary to take the tension as constant; this
gives the equation of motion

[?‘ 6‘5} L 18%  pri%

e

~
or oF

As 2 Is presumed to undergo periodic variations, expressible in i
Fourier series, we write

_ : 822’ _ a 4 P ’\:\
2 = w explipf), o — Pwesp (ept), A\
where w 13 independent of £, This gives "':"3'«.
8 [ Bw) | 18% S
ot Prw 12 e XY,
or | c*r} r e - F

We now further assume w = u cosnf, Whe"’i% 18 1ndependen1; of §
and # is an infeger. The significance of fhlb assumption will appear
later. We now have <\,

1d d,'-?,el ‘-"12)
_____ L/ . |_I kz N — 0
v dr {J dr) ( R

of which the solution is 24
% z\a&}ﬂ(kﬂ -+ BY (k).

Accordingly, for the displacement,

K;\z?ﬁ pt cosnB{AJ (kr) + BY (kr}}.
7\

No far h}thing has been said about the shape of the membrane;
but the”md]} sis is obviously adapted to the circular form, and this
‘«\lll,\be\(,mployed If the membrane is complete up to the centre, as
in\a_tambourine, the function Y, must be discarded since it makes
zinfinite at the origin. It may be retained for an apnular membranc.

In the simplost case, where # is zero, we can take 2 == /A cos ptf (k).
Aszis permanently zero at the edge, where + = a, we have Jylka) = 0.
The smallest permissible value of ke is 2-4048. For a given membrane,
this determines % and thence p and the corresponding frequency.

It is known that J,(x) has an infinity of zeros. We denote the suc-
cession by ¢, ¢,, . . . , and the corresponding values of by &y, &s, - . .,
80 that £,0 = ¢,. A corious consequence of this can be illustrated by

(@ 1ay) 7
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giving s the value 3, say. If z is proportional to J (&), then at the
boundary where r = & we have z proportional to

Jolka) = Joleg) = 0.
But nearer the centre, where r = kyafky, we have z proporiional to
Jolkgr) = Jyfkya) = Jyle;) = 0.

The conclusion is that this value of # gives a nodal cirele; snd phe
same applies if 7 = kyafks. In general there are (s — 1) nodal giteles
if Jy(k) = 0. This is the analogue of the possible nodes on haating
string. : O

In the more general case where 2 is proportional tonids nfd ()
the displacement is permanently zero if either J,,(kr) =4 Door cosnd = 0,
The former must hold at the periphery and J,(kay=s0. This has an
infinite number of roots, each of which gives aNyorresponding value
of k. There are no nodal eircles, except the hoxtndary, for the smallest
root; the higher roots give nodal cireles, /The alternative cosnf = 0
gives nodal diameters corresponding to #8%2 3xr, 3, . . . .

In the above solution, all points gimultancously pass through the
equilibrium position and hence h&\fr}" the same period, This is known
as a “ pormal mode ’; in gengral the motion is more complicated
than this. In a normal mode, With nodal eircles and diametezs, adja-
cent sectors are in opposite ‘\phase. The matter is treated more fully

i texts on sound, \\ }

" EXERCISES

1'. If fmﬁﬁnular mentbrane has inner and outer radii @, b respeetively, prove
that 1!;3 slowest mode of vibration i given by the smallest root of the equation
...\: \ J o(m)_ o :’To("cb)

QO ¥ i(ka) ~ ¥y

2. Bevorting to the problom of the taut string, a non-uniform string of length
A bas its ends fixed and is kept taut by a tension 7. The line-density at distance

@ from one end is p(1 + kw)yL. With the notation of the texb, prove that the
possible froqueneies ate given by

iwl_ of y(nec) 9 [ o\
To) ~ Tymey "= B o= ?) .

3. Investigate the more general ease of the vibrating string when the law of

density is p(1 + kz)—2, xa= 2 — m~L, m an mtegor.
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62, The oscillating chain.

Droblem 8.-—The small oscillations of a uniform chain suspended at one
end.

This is another of the elassical problems of our subject. It was
first discussed in 1782 by Daniel of the Swiss family Bernoulli; later
on in 1781 it was taken up by Euler. The chain is a flexible ﬁlament
of uniform line- density, devoid of flexural rigidity. Let one end hed
fixedl to the origin 0, with OY to the right and 0X downwards. Ifd
be . point defined by O4 = s, the tension 7 at 4 makes angle g Swith
0X and has an inward component given by ¥ = 7 sini., 4% an
adjacent point B defined by ¢ -+ 8s the corresponding outward com-
ponent is Y -+ 8Y, so that the outward resultant oty the element
A i Y

8Y = —8s=_

oY a { ay
os

83]8.8 »

1f p b= the line density, the mass of the e]emeﬁt ‘ABis p s and its decel-

etation 78 §f; moreover, since the oscillationsare small, it is sufficiently
ourate to take the tension 7' as the Werght of chain below A. Hence

T =: og{A — 5), where A is the lengbh ‘of the chain. This gives as the

equation of motion "

ay]

%f—bm 9%

The oscillatory nature’ of the motion can be allowed for by the sub-
stitution y = cog (ﬁt . ¢) and the equation for ¥ hecomes

N o d?n  du
N (~»~——+p
The Buhsi:i’altion A — 8 =z, ds = — dz, which is equivalent to measur-
ing§rom’ the lower end of the ehain, gives
1du 78
— - = O ,'152 =,
dzz + 2 dz + z a

The solution is obtained by comparison with our general standard
3-6(2) and yields
a=10 y=1% =a=0 B=2%
Thus
u = ATk + BY (2kst).
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For the determination of the constants we examine the free end. Here
¢ = ), z = 0 and as the digplacement y (and therefore «) is to be small
we must have B zero. The other constant remains indeterminate singe
the oscillations are merely small. At the fixed end O we have y =
0==u=s,2==Aso that Jy(2kA*) = 0. Thus 2kX* is a revo of Jy(x};
any particular zero furnishes a value of & and this in turn determines
p and the corresponding frequency of oscillation.

If we equate & to zero to get the initial shape of the chain we conclude
that, for the simple type of oscillation we have been dizcussing the
chain must be started in the form of an odd number of half-ifups of
the curve J (2%} with a zero at 0. DBy slightly changingythe drigin
of time the system can start from rest; but the form will\stll! have to
be as stated. : )

At ¥ i

™

EXERCISES | \\ J

%4
W

1.-Examine the vase of the non-uniform qh'a;in where the density iz propor-
tional to the mth power of the distanec from thetree end. P’rove that Lie solution
depends on the function z—¥%J, (Be?), Rige 4pt(m + 1), It was pointed out by
Greophill that a practical approximatidn would be a large number ¢f parallel
wires of non-uniform length connectéd'on the principle of the Venetian bind.

2. If the end of the chain caaTi;és':; mass, equivalent to a length k. prove that
the normal modes are given I.*\;?

\\ gk J(2H)
\ T2k} ¥ (2R
where I = A 4- k. po\/
AS

6-10. Heat donduction in ome dimension.

Onéef the outstanding characteristics of physical constants i
that@hmost inevitably they tend to show variation over an extended
r¢uge. Thus a coefficient of expansion which normally has the con-
tant value o is pretty certain to need modification if it is to be em-
ployed over a wide range of temperatures. The form to be adopted is
then empirical, and even if theory indicates the nature of the depar-
ture from normal, experimental verification would be nceded before
adopting any specific form. The form most often adopted is a simple
polynomial a -+ 8 + 422, the number of coelficients being a measure
of one’s fastidiousness, and their values being determined by some
such method as the principle of least squarcs, Wor the most part the
above method works quite well and it is usually possible to derive &
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gerics solution for any differential equation in which the modilied
coellicient: is employed. The method has one drawback from our
point of view, in that Bessel functions fail to be of any assistance.

fince the law is empirical there is little lost and a substantial gain
in drepping the above quadratic form in favour of a(l -+ i¢)*. Both
have three constants, which is nsually enough for even the captious,
and they can be determimed to give minimum error over 2 desired
range; bub the latter form has the advantage that it fits in with the
form of Bessel’s equation. This accounts for its presence in such widely {
differont researches as the tapered fransmission line on the one haad,
and the transverse vibrations of tapered rods on the other. Gangs has
given a method of determining the best places to measure, when a
variable quantity is to be determined from three {or any lindited num-
ber} measurements, and the three-constant formula is gf'\'wide appli-
cation. O

N
. . S £, .
DProblem 9—One-dimensional heat conduction in & heterogencous medivm.

Consider a slab of material bounded byttﬁ-'o parallel plane faces
(a wali) and suppose that the temperatuke-is uniform over any plane
parailel fo the faces but varies from pﬁ§ plane to another. The flow of
heat is then normal fo the planesaConsider an arca a parallel to the
planes. The heat flow I7 per second through this area varies jointly
as the area, the conductivitymfgand the negative temperafure gradient.

2.

If 8 denote the teraperat-l,{e< at any peint, this gives

o8

o\ H = —xa —,

P\ “ o
where the z-axiss normal o the faces and the origin can be taken at
any conveufent point. At an adjacent place defined by » - 8z fhe

heat flowts I -}- 8H, so that the heat accession to the volume element

s O
4 o
N it =~ ar =12 e ‘?.f:’}am.
ox oxr i

This will show itself in a temperature change. The volume of the
element is a 8z, so that its heat capacity is aps 8%, where p is the density
and s the specific heat. We accordingly have
d o8 Gl
= {K{}} é;] 8z = aps = 8.
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The area a being the same at both ends of the element, we deduce
&0  10x00  psob

2 kdwow  x O%

a3 the equation of heat conduetion.

We attempt to effect a solution by the substitution § = X exp(—p1).
Here X is independent of ¢; the negative exponential ls preferred
sinee a temperature may reasonably be expected to decressc to_zewq,
but not to augment indefinitely. The equation becornes .

O\
d_g+1d_"f'g+@xzo, A
de?  «dz dx K QA

Tn the simplest case the physical cocfficients are Al taken to be
constants. The middle term then drops out and the"Bhua.tior_s 15 soluble
in trigonometrical functions. As a first modificdtion let us assume p
replaced by fp(z -+ f)~*. This variable degsij@'}:night be ascribed to
any of a number of causes such as porgsity, humidity, weathering,
and so on, The coefficients being otherwisrconstant we now have

2 2
wt f—z’_ X0, =W
JT & o8 K

The substitution N\

JHb=2 do=dz
gives ) i*,\

N@EX R

s R

This is soluble(hy Bessel functions. Comparison with our standard
3-6(2) gives. {
Y a=3 B=9% y—i n—1
The sp}ﬁ”s}on i8 ;
o) X = 43 (265%) + BaAY,(2b2}).
“The temperature is therefore '
0 = e 4],(9bH) 4 BY,(2b:M).

il‘l'le‘ constants 4, B would have to be determined to fit pre-assigned
Initial conditions, and no doubt series of values of p would have to
be employed. This aspect of the matter will be resumed later,
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EXERCISES

L. Calenlate the tomperature gradient. If one face, defined by #z =13, is per-
nancitly at tho tenrperature of the external medium, deduce $hat

AT {2523) 4 BY 2bF) = 0.

2. I the variable density is gf*z -+ f)% and the variable spocific heat is

sh~'{a < k), deduce that, with the notation of the text, ~
X = AT, (2b2}) + BY,(2bz})}, a
wira 2 AN
bk = pspft, 14 4% =) c=f— A, 7N\ ¢
Ny
so that the order # is real provided 1 + 48% > 0, N

8. Presuming the density and the specific heat to be con.stant%’lcb the variable
condwnetivity he a(l 4 @/fujr. “\

{i) Prove that the eguation is soluble in $crms of J,, X, NEr = 3,

(31) If r = 1 the functions are of zero order. ~\J

(i) If ¥ == 1} the functions are of the first orden’ ;,\

(iv} Prove that the cquation is soluble by Béfao} functionz for all values of
7 exeept ¥ == 2, in which case the solution can{bb, éffected by elementary means.

(v) If r = 2 the equation may still be ghluble by Bestel fumctions if p and
§ vary scpatately or jointly. Investigate this.

4. Tavestigate the flow of heat alon2™e lagged bar of wniform section on the
assumuption that the conductivity, density and specific heat are proportional to
&4, z¥ and 2f respechively.

6-11, The tapered str]ﬁx\ )
Probiem IO.—-Disciisé the stability of the tapered strut.

An elemengaty’form of this problem has already been considered
in the preyigits“chapter. We continue with the case of the triangular
ribbon, fizet removing the tip and thus reducing 1t to the trapezoidal
form. Fhit gives I = H(z + h)/h. The number % defines the fictitious
verkdof the triangle. The equilibrium cquation is

N/ (@ R
; Y L Py=0
Bl g =0
or,
dly B o o 4Pk
@—i—@y—-o, z=z-+h k—EH.

This has previously been solved and we have
¥ =2 AT (k) + BY, (k%))
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The end conditions being
z=0, z=~#,
z= A, z=h+A=1

we derive

0 = AJ(kHY) + BY, (k)
0 = AJ (i) + BY(kH).

The ratio 4/B is determinate, but one of them remains arhitrary{The
elimination of the ratio gives O\

JL(RRD Y () = J (k)Y (kDY) O

as the transcendental equation which determines, E t-his in turn
gives P, \

Ag a somewhat less simple illustration we take the Ioff end to be
clamped horizontal. The origin is a$ the leff and the y axis is positive
downwards. The right end is under horizal \l thrust P, but is pinned
to prevent lateral displaccment. Thij, ca&lb up a lateral force which
we may call B and presume o act dowrm ards. An cqual and opposite
thrust P acts at the clamp, as alat} gh upthrust 2. There is further a
couple (f which is meterclockmhc on the assumption that the deflee-
tion is downward. Conmdera.t]on of the moments about any point
of the ribbon with eo- ord{m’req #, § gives the eqnilibriuvm equation

\\EIJ = -- Rz — Py.

With the above .assumpt-lon as to the value of I we have

A/
o mpEEI R Rz — Py,

\’ o odx?
It ig st\mallv evident that 0 = R, -and hence
.“\"
2\ EH A%y ’ ,
A% i z'é—R("ﬂ“f*—Z) Py, ze=a Lk

There is now a particulsr integral
y=R(A4h—2)/P.
The reduced, or auxiliary, equation can be written

Py F 4%
ATy =0, B="0
Y k EH
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The solution is
= MAJ (k) + BY (ke? }+ ALk ~—2),

whenco

dy __% B{4T (0 + BY flety} —

For the end conditions at the left we have

#=0, z2=h y=0=y. : N o
Henee )
N
0 — AT, (k) + BY, (bi) + & » i,
0 = AJ(khY) + BY (hi¥) — ﬁ O
At the right we have AN
w=N z=X4 k=1 =0
Herneo O

0 = AJ (k% + BX(RB).
These three homogeneous equ%tlon& van determine nothing more than
the ratios 4 : B : R even if congistent, It is readily verified that

—4 "i,\ B 7R

20 Y | (kRY) + m Y\QM 2RET (kR - kM (kRY) 2P

The condition that, the thrFe homogeneous equations are consistent is
obtained by ehmﬂutmg the ratio 4 : B. The result is evidently

\% 2!3%’1’1(%”) - EAY (kR _ l(kl*)-
N2 + B L)
N\
'hi%73s the transcendental cquation that determines %, which in
turn Hetermines the eritical thrust P.

It is posmble to locate the point that tends to maximum deflection
by equ ating ¥’ to zero; but the manipulative algebra nvolved is more
tedious than 1llummat1ng The lateral force E remains indeterminate
and the ourve taken by the ribbon is reminiscent of the profile of the
underside of a spoon. Consider the function R(A + 4 —2) — Py. It
is zero at the right; at the left it is positive but decreasmg It accord-
ingly has a zero somewhere on the ribbon and it is not difficult to see
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that this locates the inflection. The fact that it vanishes at the right
is equivalent to the absence of any end-couple.
Reverting to the case of the ribbon under simple end-thritst, let us

take
I=H$iﬁ)zﬂé),z=m+&
The equilibrinm equation takes the form ~N
y' +mP%y =0, kWﬁ——ég ‘<£§

On comparison with our standard 3-6(2) we deduce

o=} y—l4d, n=—., &
+ }
Tt appears from this that the problem is qolﬁble in terms of Bessel
funotions for all values of » except —2. As. )\f‘ﬂl]b below —1, the order
n angments without limit. When r is zefo,we have ¢ = } = =, so that
the solutions are of the type atf,. Butwhen r is zero, the T‘lbeﬂ is
uniform and the sclution is known to be trigonometrical. We thus
revert to the theorcm: that funct;ons of order half an odd integer are
expressible trigonometrically, h
A more interesting resxﬂt is derived from letting % become inde-
finitely large, so thati@4 lso becomes large. Sinece 52 is propornonal to
A, we have B ultﬁately proportional to %, so that the funection
Jo(Bz?) approximeates to J,(1). But as h augments indefinitely, the
ribbon approa.r,hés uniformity, irrespective of the value of n. The
solution iy {h&l trigonometrical. ‘We conclude that, for large values
of the %gumcnt and irrespective of the order, the fanction J (%}
betweem, consecutive zeros behaves like g~—*sinz. The result is one
asp&ct ‘of what are known as the asymptotic formule; it marks an
\Ldv’ance on our previous knowledge of large values, which was (¢) that
he absolute magnitude of the stationary value continuously decreases,
and (b) that 4J,(x) increases indefinitely with =,
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_ EXERCISES
L. Taking I = Hix 4 )/ for a ribbon of length & with both ends built-in
and subjected to end-thrust P, provo that the econdition of stability is
JyEkht) _ Jo(kE) 12 o AR

T kht) Y (kif) T EI
- The ribbon of length X is built-in at the left. At the right is vortical Joad

I= A4k

W a,luJ horizontal thrugt P, Taking O
A+
x + AR (z)ﬁfa f:\..\
I== H(])_Hk, A
prove that the conditions at the Ieft lead to :‘:f"
o AN 3
0= AJyp) 4 BY4{p) + r ¢
GIVARt
0= AT(p) + BYalp) — —= .\
mP x.\\,,
where '\ #
36 PR N
2 o . mh —T‘P(-'
EH O

W Y
N

The end condition at the right leads to N
0= AJig) + B¥sg), P = 1=2+h
Tho last cqnation gives the ratio A B ‘the other two equations then deferming
A and £ in terms of ¢. Thus & le\ﬁeturmznable, and so is the end deflection 8,
given by ¢ = Wi -+ P3. ¢\J
3. Establish the followmg esults'

f Jy@)du =1,
¢ \,: (11) J ) do:_ o ppal) dee,
:"\,':’;3 (iii) fo x‘iJéf:c)dm = (An)t
N o
\ / (iv} f z Wy (w)de = §.
0

L i o N 1
(v) f x J,m(x)dx_m.

4. Discuss the following argument: By the repeated use of the recurrence
formula it can he established that

%faMM=Lw+hm+&m+..
Q

Hence by allowing # o tend to infinity the value of the inlegral is zero,



CHAPTER VII
The Modified Functions

%-1. Fonelion with imaginary argument. £\

It frequently happens in physmal investigations that ﬂemccd
Bessel functions of purely 1mag1na1y argument. There Le+q n68 on
that account be anythlng 1mag1nary about the functions, iy more
than there is anything 1maé1nary about cosx, which, hapjne‘h to be
definable by means of the imaginary exponcnﬂal exfw. Thesc func-
tions satisfy a differential cquation which is a modifieation of Besscl’s
equation different from any we have yet c{mS}Qered In a more ele-
mentary field we have analogously that §G is a solution of the
equation & - w? = 0, whilst coshe?, opcdsiwt, is a solution of the
allied equation & — w? = 0. O

We know that a solution of the cquatwn

d“]f;_]_ldy_F( —-.—)z;:O

is o\
(e )_mﬁ} {}\’\_“;i“?f_ 1 Got | }
+ ]a Lin4+1)  1.2n+ Din+2)
Replacing » b{ (3] yand da by ¢dz, we conclude that

\» . (G [ (w2 ]
B (Ol S TR TR
m‘a\so'luhon of the equation
V
@y, 1dy o3

and so, too, i‘S any numerical multiple of it. Note that only one of the
four terms differs in sign from Ressel’s cquatlon

We remove the undesirable i imaginary in defining a new function
by the relation

2) L(@) = (i) "J o(in),

100
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whence

® Liw= =

(de)® (Fz)*
1 e 2 b
J{ +1(’»‘%+1)_]_1-2(’»'%—f~1)(i"¢+2}+ }

This function I,.(z) is known as the modified Bessel function of the
first kind, and it satisfies the equation (1). Certain of its properties
strike the eye immediately (fig. 8) and show that its behaviour is
quite differcnt from that of J,(z). For positive values of &, which are
the only ones that matter in practice, and for positive orders, every

N
2N

=

\ 1g. 8.~—March of £, and K,

term in the brack®is positive and increases with z. We conclude that

in these ecirey fastances I,(z) cannot have a posttive zero, and the

external fatter'(32)» shows that the function passes through the origin,

An immediate corollary is that no solution of the equation (1) can have

two zaras; for by the general theotem on the interlacing of zeros,

I (@) would then have a zero between them, and this we know is false.
\‘I'he unique zero order gives

(4) I4{0) = 1 = J,{0).

For negative orders, the external factor {1z} becomes infinite when
% approaches zere and the function is asymptotic to the y axis; hut
negative orders are not particularly interesting. Just as we discarded
J_y in favour of a second solution ¥ »» 50 we shall later discard the
negative order function I_, for a second solution K,. For negative
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integral orders we write the relation J, = (—1y/_, in the form
{&) ], = (1) _,, which proves that

(5) I(2)=1_,(x).

- Note that there is now no ambignity of sign; the functions are identical.
We shall accordingly be faced with the problem of finding an indepen-
dent: solution for integral orders. The series definition of the function
partially breaks down when  is a negative integer. Some of the deno-
minators become zero and the factor I'(n -+ 1) becomes infinitel, The
reconciliation is then the same as was employed in the parallt] ease of
the function J_,(z). AN

- 72. Recurrence formule. N

The Bessel functions of order { are known to b txprussible trigo-
nometricelly, and on switching over to an im¥iginary atcunent it is
reasonable to expect the modified funetions of\grder 1 to be expressible
in terms of hyperbolic functions, This ig,flie case and the verification
is left to the reader among the exerciges ‘Similarly it is natural to
expect recurrence formule, and in fast we might have investigated
the functions from this end, as guggested in 5-6, Ex. 8. Replacing
z by 4z in the relation ™

NS

d o N
T o Jﬁ(a;) = nf () — Tl 141 (),

we have ‘m\
LA L : d, .
iw Fm 'Ju,&(zx) =t (1) — tx , (ix) = = o o o (13).
A/
Multiply thisBy (i)~ and it reads
\Nv
O d
z‘\\ @ = L) = nl,(z) + 2L,,,,().

...\N:’bté the change of sign in the last term. It is then simple matter to
N Aeduce the five relations

(1) ol'y +-nl, =aI,_,,

(2) al, —nl, = Tl sy,

(3) Iii— I, =21
€T

(4) If:—l + Im—l = Q'Iﬂ’!

(5) I =1,
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It hes already been pointed out that for integral orders, every
term in the series for £, is positive and increases with z. The same is
therefore true for I, and I,/”". Henee the graph rises from the origin
ever moxro steeply, rather like the graph of sinh 2. The relation

2n
Iy = Log— P I,

indicates that I, lies lower than I, , (fig. 8). Fora given z, the value
of the fuauvtion decreases as the order rises, so that the higher orders
are slower in taking off from the « axis. We can illustrate this from the
tables by considering, say, I,,(4) for different values of n. We find$

7, 0 1 2 3 4 5 6 ™8
L), 1130 976 642° 334 142 050 0-15.\:0-04— 001

Two sclutions of the same second order equatioh ure necessarily
connccted, and the appropriate modification of théwelation 4-4(1}

JﬂJ—n’ - J'n’J—n == :2 S‘In}eﬂ

ATE
. ’:‘
gives N
. 2 sinnar
(6) I‘RI—W' - Iutfé;a':’: - s
~ e TTE

P4\

- o\ .
whence other similar results@an be derived.
gL

3. Standard form\o’

The fumztiomi%at appear in the solution of various problems ¢an
hardly be exﬁéﬁted to take the simple form I,(z) and we accordingly
Tequire a genheral standard for comparison. If we replace 8 by 8 in
our 'E\rﬂﬁb’us standard 3-6(2) we conclude that 2°J,(182%) or any
Humgm&l multiple of it, which includes z71,(8xY), is a solution of the
equation

72, 1 — 24 4 n2t aﬂ:’
1) %Y, l—cnay -1z YT Y, o,
O Zhr 2L gy

_This will be taken as our standard of reference. It again appears that
Ha=1 the equation is in the normal form; conversely, when the
equation is in the normal form the solution must contain the factor z?.
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7-4. Lommel integrals.

We can work out the corresponding Lommel integrals by putiing
a =g, y = 1. Taking two functions of the same order, let

w=all (), v=2al (uz).

The corresponding normal equations are

@ =0 A, ¢
o] ’ {

uH - [’)‘2 _i"‘ n_g

2 1
#
L @ 35’
F {‘LL +—x2

€N

where dashes denote differentiations with respech tl;a\ . The elimination
of » leads to O

(A — p2)fuv de = oy B v,
which iy ,\

v
»

1) (- fu "ol X () dis ?gz{ﬁfn(pm)f_n'(ax) — L ) T (),

where the dashes now den.otqﬂﬂiﬁcrentiation with respect to the argu-
ment. No suitable upperiimit exists for making the right side zero;
the function 7, ac(zording%y has no orthogonal property.
If we take the tw\d\ft‘fnctions to be of different orders with the same
argument, 50 thain,
NG w=2 k), v= (),

we have thénormal equations
N

From these we deduce
W
(n? — -m-2)f_; dr = w'v — wy’,
QJ“'

which ig

(@) @ = mg)‘/.gxfﬂ()lx)}rm(/\w) t_f: = ML/ (M), 00 — 1), ()},
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Finaily, if we multiply the equation
ldy n?
AZ - =
(R D)n y=10m,
by 222" and integrate, we derive
¥By'? = (A%? + n?)y? — 2N 2 d,

y"

which iz

(3) f z{I, Ax)} dr = (xz Az){j,,(,\x)p —a{l, (Aa:)}z

& .
o\
« \J
(”"*
EXERCISES O
~\
1. Chuck one of the racurrence formule against the fo]lc*w" ing values

fy=2:0661 I,=08104 ;=028 a= 36,
2, I'vove that .\ ‘

Ii{z) = (;-:Ez) %sinh 2, ‘(x')‘-‘- ( ) ico:ah z.

H¥ralrate for the orders -}- 11,
nunciate and prove the generai pmposmon.

Z vin no
B S = L T

= I I h\}\-l‘-’IFﬂIn+1.

) anl,} =L,
\ J

(s
rdgs ; agf( e

e I, (Bt} = 30D, (6,

s on
4. ]

2w

2
N
PR

O ) = 4t et

5. Pruve I () is a solution of the aquation d.i (-’»"‘ j—f;) = ZY.

6. 1‘21,,,1 = {n(ﬂ, —_ 1] + x‘z}fn —_ xfﬂ+1.
T ) olpy =yt (0 Dy (0 Dpgs e

(W) [, s@)de = Iy — Typa b L — - -«
[

r @ -1
8. 2 dat I, = n—!‘+fI?’l~—T+2+ ?‘('?' 3 )I T Ioym
{a150) 8
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9. Prove from the tecurrence formula that 7 -nl®) has no pociiive zera il
0<n<l

10. Obtain tho expansion for [, {z) by using the method of Frobesius to golve
the differential equation,

11. Show that the seeond sclution for zero order contains the fera 7 {x)loga,
12. Determine whether the equation y” = # can be solved in &

[Ans.
13. If 1t is o zero of J (1), prove that _
Q.
1
(W + %) f 2L (el () die = T (0T, (). .
0 AN
14. Prove that e\
dx ) R A ¢ R Dy
fxfnz(x) = 7 Zsinan T "G

¢ § ?

15. In view of Ex. 2 above, prove that #f the order ig; 'h@\}f an cdd integer,
positive or nogative, the function I (z)e= for large valued\Ot  is amn ptotie to
(2rz)~}. Aw appeal to the principle of continuitly makes 15 reasonable to suppose
that the propesition holds for all orders. ¢ ;.\

16. If y satisfies the equation 7-1{1) and a newﬁﬁe}iable zig definc? Ly g =265,
prove that » satisfies the equation )

&% (2 1) & %
it Btk e=o

LR
3

7-5. The second solution. \

The complete solu’ci\dﬁ~6f the equation 7-1(1) is y = A7, (x) -+
BI_.(%) where 4 and\ B arc arbitrary constants, and no solation can
have any form but shis. There is effectively only one constant here when
the order is in‘g(g:ril, and in almost all research that involves Bessel
functions ’shga“\a,(i’b'ent of integral orders is inevitable. The problem of
finding thé\setond independent solution for integral orders can be
approached “in various ways, each with its own disadvantages and

o

compabsating advantages. We oould employ the method of Frobenius,

\K? necessary modifications; alfernatively we could define the func-
H0M by Y .(ix); or we could use the equation

_ dx
_ y=1) [ AT

We fall bafsk On a previous line of argument instead. If the equation
7'1(1) be differentiated with respect to the order n, we have

d® (oI, 1 d for, < WNBTL 2,
o) )] - (2=t
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Bimilariy since I, i3 a solution we have

£ (el 14d (|el_ w2\ of 2n
il Ty b} S G N
il { on } ! xd:.c{ o9 } ( T xz) on 22 7"

If for Lrevity we pub

= =7 In - I—r? ¥
an ( )
we have by subtraction
LK 1dK #? Zn o\
e I B S VWK =20F, — T, e\
da? | z de ( T ;c2) %2 Un =T o\

When = iz integral the right side is zero and we conclude that K\ then

a solutim of equation 7-1(1}. The procedure is a.nalogm\(s{.to that for
g ¥, from J,. )

s required is a definition that holds for now-integral orders

vhich is equivalens to K for integral nrdezs;\ﬁx selection, due to

various voriters, is available and we may adapt\

I, <%
shager

(1) K@) = 4n

due to Macdonald. Thig E};éing 2 linear combination of 7 n
certainly a solutionfer non-integral orders. When % is an
iakes the indefinitporin 0/0; but the usnal procedure of the

L 3

diﬁe}'el'.‘-’:.!i}.}_ caleulus giVBB\‘\ \o/
_6?_..8];];';377 = 91 CORNT — '1‘7'( — )‘n,
B
xt\". a
¥ Z”\.” __1f __w}] " o
ottt \ORyfe) = 4(—) {an (I zn)},

This is sbe modified Bessel function of the second kind. T is rather a
t-edgfs; business to find its explicit form for integral orders and the
resnlt’is not very informative when sequired; the properties of the
function are not ascertained from its series.

7:8. Recurrence formulsze.

The funetion naturally satisfies recurrence formule but they are
different from any yeb encountered. This ig one of the disadvantages
Previously mentioned; whereas J, and Y., have the same recurrence
fermulee, the modified functions 7 . and K, as accepted herein do not.
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It must be horne in mind when consulting other works that slight
differences may make their appearance, due to the particilar defini-
tion adopted for K,,.

If we replace # by —n in the definition 7-5{1), both nerator and
denominator change sign, so that

(1) H () = E_,(=).

The companion formula to

ol =nl, 1 z,,, o
i Cal, = —nl, +al,_,. R Oy
Changing the sign of % in the latter we have A\ N
wl ' =nl_,+al_, \:‘ :
Subtract the first equation and divide by sinnz. Ingwirtue of ihe rela-
tion sin(# + 1)7 = —sinnm we have \\;
2 el =nK, —m](wr\
Changmg the sign of % and using (1) e havo
() oH, = ~—nE g~ oK g
Bubtraction then gives R :; "
{#) PR (K, A 2Ky,
whilst addition gives \\‘
(5) K, =-K,,, — K,

These have beent e:ﬁabhshed on the assumption that » is not integral;

the ]ustrﬁcauqn or extending them to integral orders is an appeal to
their eont] ag functions of their order.

Smce £, and K, are two independent solutions of the same reduced

equatlgrn of the second order they must be related. Using the defini-
‘\fl\'?* we have

—~1I/)K, =37 cosecnm{l (I_,' — 1)) —1,/{d_, — 1}}
= }mcosecna{l,I_,/ — 1)1}

{6 . =in cosec%»n[— 2 Smﬁ] _ 1’

e €

which can be thrown into v

arious forms by use of the recurrence for-
mule,
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When the order is zero we have from the recurrence formnlse
{7) K =—K = —K 5

When the order is  we have from the definition and from the previous
74, Ex, 2

e

™ % '
(&) =& \
et O\

. € N\
Since i\

g ™

1 1 3
Hp= K+ K= (1 * E)Kv

3
K (») = Lw cosec %7?’(-%—) (coshz — sinhz),

I

(33

.
it is readily deduced that K,, when » is half an oddmi}lteger, is K,
multipli=d by a polynomial in 21, Consequently all'sirch funetions are
asymptotic to the « axis like #¥¢¢, and an appeg) to the principle of
continuify warrants the belief that the funé;g‘un behaves similarly
whatever the order. This is another asppét: of the asymptotic values
previously mentioned in the concluding tewiarks of the last chapter.

N

V7. Graph of K, \\

Coniing now to the graph of K, it has to be frankly admitted that
satisfactory proofs of an leméntary nature are not to be had, especi-
ally of she out-standing,l}oposition that K,(%) has no positive zeros.
The graph resembles & Boyle’s law curve, or the rectangular hyperbola
@y = constant in the first quadrant, In default of rigidity the follow-
ing is offered ay&\a;}énond best.

The rclat;‘\&'g"? -6(6) can be written

" d [Kﬂ}__ 1
~O dr\1,] = el
The right side is essentially negative and steadily decreases in absolute
value to zero as & approaches infinity. The funetion K, /I, has no
stationary values; its graph ultimately becomes horizontal and the
function approaches a constant value which we may denocte by c.
This ¢ must be zero; for since I » Ultimately increases without Hmit, so
too must K, if ¢ is anything but zero. But K, certainly does not in-
erease indefinitely when the order is half an odd integer, and it seems

Teasonable to think it does not do so in any case. Hence we take ¢ to



110 APPLIED RBESSEL FUKCTIONS

be zero. And as I, is always positive, the conclusion sesi: 0 bo that
K, lies wholly in the first quadrant.

Corroboration is aflorded by the previous 7-4, Ex. 11. 1f K, comes
down from positive infinity, we have Ky’ negative and thevefore K I
positive. The recurrence formula

zl, = 2K, 4 zK,

then shows that K, is positive, and so on. The slope is given by
al) = —(K, +zK,),

2Ky = —(2K, 4+ oK), ~

Ny

Q"
WA

<

and so on, so that they are all negative. The relation (™

2n 44
Km-] = Kn~-1 + ? i, ’\

shows that, for a given «, K,y is greater tha’ﬁ;\\Kn_l and the function
increases in value with the order (fig. )¢\ The following illustration

taken almost at random from the table§ shows the growth of K,(2-2)
with the order: R\

n 0 1 o 3N 4 5 6 7 8
K, 0089 0108 0-187 0449 1411 5578 26-77 1516 991
Looking at the same fupq{ions with the doubled argument 44, the
figures are \\‘ )

K,, 0007 0-008 @011 0-018 0085 0081 0219 0-67% 2-38,

which show hggr:%cry quickly the function approaches the x axis,
~C
7-8. Lom@ei integrals.

TPL(QfBTJommeI integrals coneerning I can evidently be taken over
bfldl,B’, merely writing K for I. There 1s, however, onc inportant
ierence. It i3 no longer permissible to use the origin as the lower
l'un%t- of integration. Tn sompensation, we can use infinity as the upper
limit. The fact that K n tends o zero as & tends to infinity is one of 1ts

most valuable agsetg,
7-8. Zeros of the modified equation.

The modified equation has certain peculiarities that are worth
noticing, though they are rargly mentioned. It has already been
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menticncd that no solution can have more than one zero, and a reason
wag assicned. If
y = Al,(x) + BK (=)

15 2 solution, we have

i{f_}zgﬁ {Kﬂ _—B
de |1,

y P P dr

AR \
(\D

If @, 8 aze supposed zeros of g, the loft side is zero: but the right side,
with its positive integrand, cannot ntegrate to zevo, wjmi;gaver the
limits. !ience y cannot have more than one zero, e,
There is no loss of generality in taking both the arbittary 4, B to
be positive. It can then be shown that a solution ¢ertainly can have
one zexo.  We merely adopt the solutien y=Al, — BK, which
ranges Lxom negative infinity at the left tolpbsitive infinity at the
right, «nd sccordingly crosses OX. This golution ig cerfainly inflected
and ecasvot have a stationary valuo, _The’ proof of both statements
comes inunediately from N’

Y = A {rﬂ_l,l + 7 f.,;}'ur B;Kn_l + 2 Kn}-

- Hence

i

P4\

The right side iz csseni{}ff\positive and ¢ cannot be zero, so that
there is 5o stationary yaiue. On the other hand, ¥ ranges from positive
nfinity af the lefs tp, positive infinity at the right. Tt must accordingly
reach a minimugh$omewhere between, and a minimum of ¥ is an
inflection, K722

In pzi.ra.%l.\{ﬁth the above, the alternative form of the solution
y = AL, LBK, » ¢an have no zero, the function being always positive.
Since'if{}ﬁhges from infinity at the left to infinity at the right, it must
hgye\a-mimimum somewhere between. Hence it cither crosses OX at
lea8ttwice or not at all. Bince it cannot erogs OX twice, it does not
01083 at all. From the differential coefficient we have

]
y =4 {IM 4.2 Iﬂ} — B[I{H_l +Z Kﬂ}.
x T
This ranges from negative infinity at the left to positive infinity at the

nght. 1t thercfore has a zero, which again proves that the funetion
has a minimum_ To sum np, a sclation must have either a zero or 2
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minimum and cannot have both, No solution can touch 0X except
at the origin, for this would be equivalent to two positis+ zorog, and

anyway the matter was disposed of in the theoretical worl =i Ch ap. IL.
EXERCISES
1. Establish the following results:
i
(i} dr {xﬂKn(x}} = ="K, (=} N
d, ) ¢ N e
(i) o oy} = —a K, (x) )
dm n 1 2+ {\’
(i) Kpiil, + Kyl = - ~\

A o “ ' 8
69) [ By — Ky teds = 208,238 ©
* »
2. Prove that \
: T | n{n ?’_‘:1'}

I/ = In+2 +— z J"ra+1 + \’gz’\. -1,
2 mm Ma(n - 1)
K= Kpot T Xﬂ;—l'll‘f' 2 X,

TR Y

Deduce that, for positive intogral ordetsify,” s positive and steadiiv increases,
whilst. K, w19 positive and steadily decpeascs.

3. Deduce from the last exercise:fhat the solution which has a zczo has an
inflection; the solution which ha{no zeTo has no inflection.

4. If 4 solution has moreﬁfh&n one stationary value, it must have an odd
number of them; prove a'f(it’ cannot have more than one.

5. Ife, n and m aréypositive numbers, provo that the equation
I (%} = cK,(x)

4 ,;..'
has only one solution.”
6. Verify thag)

. - eHAI 303} + BE, y(ea)}
ig the solufinn of
"';”. &y nf{n -|- 1)
o a0

\ 7. Establish the following resulta;
() & ek} — gor-tLyeah,
() 7 (Kot} — —Jor bRy,
{iii) ;:_c {ot feat)} == 3ol foad).

d
(1) o ASE (eat)} = — 3ok (cat).
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Y10, Mciian of an augmenting mass.

Having disposed of the necessary theoretical preliminaries, we can
now turr our attention to some applications of the modified Bessel
functions, o begin with an example taken from dynamics,

Problem 1% -4 moving body suffers accretion, so that s mass M ai
tume £ iz m (¢ -|- ) fo. LE is vepelled from the origin, the force per unif
iing proportional to the distance. Initially the body is Pjt’(!;:}

© origin with velocity w. Discuss the subsequent motiopl N

Kquaiing the force to the rate of change of lincar momeqﬁum we
have the oouation of motion
d

di

{M "’L_'”} M, G
7 D

where % iz the constant of proportwnal]ty. wSince M = mie + 1)fe

we have by fogarithmic differentiation \‘
1dM 1
M d T ok ¢

LN

The equaiion of motion bemmes

e I Fe = 0.
AN+ ¢ dt

Choosing 5 new mdep\s\dmt varighle defined by
27 et+it=7, dt=dr,

2\

we have finalb},\"' dw | ldz
A\ dr? ' rdr
N\

This J&the nmiodified equation in almost its simplest form, and it has the

soluﬁgn

— k2 =0,

\ ) &= Afﬂ(,-?;?) + BKU(E?T).
From this we derive the velncity
dr dz
= — = kAL (k BK (kr)}.
T { {hr) — 1l T)}

It remaing to determine the arbitrary constants from the initial eon-
ditiong
da

m:o:t, T2, — =t

dt
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We thercfore have
0 = AIyke) + BE (ke),

12

2 = AI,(k) — BE (k).

These solve to

M _ B 1
wKy wly LK, -FTK,
In virtue of the relation 7-9, Bx. 1 (1ii) S
1 O
Lk () + Ikoly (o) = -, &
we derive N .
4 = cuKfke), B= —eud ke, , o,

and the solution is completely known. It remaiigdb examine some of
its consequences. Seeing that the coefficients A, B are of opposite sign,
we can af once say that the solution has azsero and an inflestion, but
oo minimum, The dynamieal interpreféfion of this geometrical Jan-
guage is that there is an instant of zexo‘displacement and aw instant of
zero acceleration, but no instant of! Pero velocity or temyporary rest.
We proceed to Inspect the matté little more closely. The full ex-

pression for the displacement g
@ == cu{{(&fsc)fn(ka-) — Io(ke) Ko(kr)}.

7\
Regarding the right ®itle as a function of 7, it has the obvious zcro
T = ¢, which is simply the initial condition of motion. For the velocity
we have Q"
Y
~0 g; = kou{ Ko(ke)Iy(lr) + 1 o(leo) I (Jer) .

Thi_s peﬁ;inly has no zero since everything on the right is essentially
Positive; the body accordingly hus no rest position. The acceleration

...

\w‘iil"be zero if AI,'= BE,’, or

Boko)ly (k) = I (ke) { Kofkr) - ; Kl(ﬁw)].
T
The existence of a positive root for this equation is easily demon-
strated. Differentiation of the series for I, shows that the left side
Increases steadily from a non-zevo constant to infinity. Both terms
in the bracket on the right steadily decreasc from infinity to zero.
Consequently the two graphs must cross just once and there is a unique
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valee for r when the velocity is minimnm. The body loses velocity on
leaving 12 origin, but afterwards it accelorates confinuously. It jg
something of a paradox that the acceleration can temporarily vanish
despite ti: unremitting activity of the force.

EXERCISES
{The notation of the toxt is used throughout}

L Tf the Lody is initially st rest at distance & from the origin, prove tha‘f\~
¢\

its distance o wh any subsequent time is given by N
\/

c Y
g = Balke)d (k) + I,{ke) K (k). N

2. If tho body is projected towards the origin with velocity, ghﬁbo;ni & distance
&, prove thet it fails to reach the origin if v/

uRolko) < BRI, (ke). N\

¢*C
In this easo its nearest approsch to the origin occur&at,\a time given by
Lifk=)  ERI(ke) 4+ o &)
Kkv) = khE (kee) koY
8. If the body is ejocted from the origljﬁ‘}}vith volosity % and suffors attrition

in acenrdancs with the law N
¢

ﬁt’;}x m(s + t)’
Prove thab its distanco at aRy stbsequent time is given by
zof W { K (ke)I (o) — I (ke)Ko(kT)}
Deduce that the Veh?i.ty‘increascs continuously.
Prove that theffhdrontum at any instant is
O moku{E (ko) o) - T{ko)K fkx)).

Verify that$his agrecs with the initial conditions and find the equation thas
deter@e}srivhcn it is a minimom,

711. The variable transmission line.
Problem 12— Discuss the elecirical transmission along a variable line,

A somewhat dificrent illustration is aflorded by the theory (?f line
transmission, Suppose the coefficients are resistance R, capacity C,
Inductance L and leakance G, all per nnit length, go and return, Let
48 = dy define two points on the line; the distance z need not. for
the moment, be speeified and will be measured from any convenient
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point, not necessarily in the line. IF I be the current and ¥ be the
voltage across the loop at 4, we have from elewientary considerations
the equations

o ol
——=RILL_,
0x ot
ol ¥
R N L
i @V +C ot
N
In the simple case of a leaky telegraph line it is cisiomary, b 'put
L =0=(, This gives R \)
4 U
-— = ROV, A\
da? A

which is soluble by hyperholic functions when RG'fig\c\énstrmt.
In the less simple case we have O
BV _ oY e,
Y Ll BIT s Naad .
g aF T (CR FGB} ot ROV
In virtue of Fourier analysis one need consider only sinusoidal varia-
tions. We accordingly transfotm to rotating vector equations on
replacing V by Vexp (iwt). This\gives

IR LG 1 i)Y,
L \“.'

whose solution isi by analogy expressible in complex hyperbolie fone-
tions of Pr, whote P is the complex propagation constant defined by
A0 P =B L) + o),
The f?;l‘%ﬁhg can be seen in T, Mallett, Telegraphy and Telephony,
a.ngs:m. Kennelly’s work and tables of the complex hyperbolic func-
Ligns.
XE; Tt ..is accordingly evident that if we adopt a series impedance Z =
+twl, and a shunt admitiance Y = G+ ial, the analysis oan
be written

dar J— av

T
Tt is custnmairy in practiec to boost the indnctance by loading the line,
and for techmca.l reasons that need not concern us the loading is tapered.
Biven the capacity imay vary appreciably in a single overhead line with -
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a pronowiced sag.  We accordingly abandon the constancy of the
coellicien!z and derive

d(1dV
i ¥V =0
ds {z n’"r} V=0,
or,
£V 1dZdV
o 2L VAV =0,
di? 72 de de

It is now apparent that, formally at least, the problem is clogel;.;
allied to soine of our previous work, notably the one-dimensionalhsat
conduction in a heterogeneons medium. Among the variou§ ypossi-
bilities we may take 3

"
%

Z=1Zgr, Y=Y, YZy=Fk. (D

These give
&2V adV
- T = = .‘3‘521” ady = M, ,:
dr®  z dz 7 ,*D\\

RS
Comparison with our general standard 7-30N\ gives
1-2a=—a, fy=F 2)=06+b n= ;

™
N

From these we derive N

9% N 14-a
a = 1] a), B=_2" aN :]_'%.a,--b, "=
Tt appears that the ca.ae}—}— b == —2 is not soluble by Bessel functions;

it leads to a well:kmoen type of equation that is soluble by exponen-
tials. Apart 1‘}_‘013{' ﬁh\ls exception we have the solution
\~\’ V = SBG{AL;(.B-?:T} _I_ B‘Kﬂ(ﬁx?)}

Varigus \\Vri‘tcrs have investigated simple cases. In generalif @ =&
the funtfions are of order 1. A particular case of this is a = 0 = &.
The'dine is then uniform and we revert to the simple casc of solution
by “yperbalic fanctions, which accords with the known values' of
I t and K 3 :

The case —a = b was called by Ballantine the Bessel line, and the
Particular case —g = 1 — b, which has the solution

V = Al (k) + BE k),
is known ag the Heaviside Bossel linc. If g = 1, b = 0 the series imped-

ance tapers and the shunt admittance is constant. The reverse case
has also been investi gated, as has the case where ¢ = =1, & = Q.
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«an be made

Zofz + p)/p.

ant complex

A modification, parallel to some of our Previous wovh:
by introducing a fictitions origin otherwise by writing *
Here p is 2 complex number such that Zy/p 1s the «
change of series impedance per unit length. The esvontinl difference
between this and the previous case is that there is now 1o corregpond-
ing real origin for the series impedance. The equation fr }7 becomes

2
&V 1 av YZ,V ptao_ .

a2 pfzds N
The substitution < C )
Pta=2 do=ds 2 QO
produces N
d_B;V -— ]—_ d—pT — ;62317 = 0, 2= g%é”
42 2 dz &)

on the assomption that ¥ is constant, Com‘p}f}son with onr standard
7-3(1) gives A\ Qg

1 —_ 2(1 == ———]_’ Bj/ = k’ 2(}&'—. I_} — 1, Y = A,

whence K
e=1 A=k y=1}, u~—=

Lo
i

The solution is therefore <~
e .
VA ALk - BE (31"},
and the current panhe derived from
A

N 7 _ 1dv
: ”\.Q v/ — g
:\“ Z dz
It st be borne in mind that the sbove iz little more than a formal

jsoluion. Any attempt to utilize the formulse for purposes of computa-
\tmﬁ must take cognizance of the question of phase arising from the
omplexity of the constant %. This technicality lies outside our scope.
Theoretically there is no reason why both the series impedance

and shant admittance shonld not hoth vary in accordance with a law
of the type (¢ + P)*, a8 was done with the density and specific heat in
the case of one-dimensional heat conduction in a heterogeneons mediunt.
From 0ur point of view these can lead 1o nothing particularly new or
Interesting, and possibly they are not of sufficient practical importance
t0 warrant investigation, Those interested may like to consult a paper
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by A. T. &iarr on the non-uniform transmission line which appeared
on p, 1052 of Vol. 20 of the Proceedings of the Institute of Radio En-
gineers in 1352,

7-12. Equilibrium of & non-uniform tie-bar.

It is well known that in the more elementary theory of beams and
struts, wiveh usually serves to exemplify differential equations with
constant coelficients, the problem is generally soluble in terms of
trigonometrical functions. It is very rarely pointed out that if thes
strut becomses a tie and is Iaterally loaded, the solution involfes™
hyperbolic tunctions. This being so, it is hardly surprising that certain
deparbures of the tie from uniformity lead to a solution by thg,ﬁii:i'ﬂiﬁed
Bessel funcrions. One would expect any such solution"‘rQ'\tiavert to
hyperbolic functions when the departure from unifotfaity is made
indefinitely small. ‘We propose to discnss a problem Qf this type,

X'\ d

Problem 13.—4 hovizontal bewm of length 2X has t’zfr%’arm Ivad w per unit
lengih. It is simply supported at the ends.dnd there is end-pull P.

The moment of inertia of section, I, at distaiige v from the left end 1s given
by £ == Hiw 4 h)/h. Discuss the eqlilibrium.

It will Loth illustrate the method and serve as a comparizon if we
briefly sketeh the solution when £he tie is uniform. The y axis is taken
Positive downwards since theedeflection is in that direction; the origin
can be conveniently taken ‘it the middle sinec the arrangement is
symmetrical, The vertisal reactions at the ends are each wl, and
taking moments aboub Rny point in the right half-span we have as the
equation of equil}b\r}?}ﬁa

\o&?;(;! — Py + %w(:,v -+ }L)2 — w,\(x —+ )l)
This ew'dezrél}} has a polynomial particular integral of quadratic type.

We ac{tmﬁlhigly substitute
y=at B+ N+ ylz+ AR
On comparing coefficients we derive
w CwA |
T PE T T
The full solution can be written
¥ = A coshnz 4 Bsinhnz + a 4 Sz + A+ (@ + A

Q.
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The two end conditions being y = 0, 3 = A, —A we huve
0 = 4 coshnA + B sinhu) +- q,
0 = 4 coshud — B sinhud L

From these we derive the arbitrary constants as B =0, 4=
—asechnd. The solution is accordingly

O\
S w {coshm 1]_‘ )

gpo=e __ T - (AZ
4 Pr? {coshnd 2P ( ! O\
7\S ©
Turning now to the problem in the proposed form, we have as the
equation of equilibrium N

Ef‘r (o B+ Ny’ = Py + Jwla + 220z - ).

N
There s again a polynomial particular ini;p'g:ﬁa} of quadrstic type, and
carrying out the same procedure as before, we derive

-

W ﬁ’_w)t W

TR &5 e
e,
y _'.M\“é?, ETII* = pPE = 4}6“ -

O
The complementary fimbtion is derived from

Rt
oy 4 BHa LG4 A
."\’: .
The ST%P %‘it‘titmn %+ k- X =2z suggests itself, and if we override
the objeetion to having two forms of the independent variable in the
same'expression, we have the solution 7-3(1),

Ny = HaLea) 4 BE\(v)} + o + Bla + ) + plx + A2

With a slight reduction on using { = % - 23, the end conditions left
and right Tespectively give

U= k%{*’ifl(‘p}ﬁ) + BKI( Vkﬁ)} - Pw ?
"

0 =4I (it + BE (v} — Pﬂé ;,
ne i
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for the deivrmination of the arbitrary constants. They solve to
. w/Pr2 '
I (viHE () < LK (vi¥)}
_ 4
BB — TE, (i)
B
LAY < BT Q

It s 2 matter of elementary algebra, which can be left to the reader,’
to show that the particular integral is expressible as 'S

\ W

_wathtAd, w 5 .3 P\

P O
50 that the similarity with the previous solution is quite marked. Tf
we allow % 1o become indefinitely large the beam.Batomes uniform in
section st the variform solwtion sheuld go 4ver into the uniform
solution. The term (2 4 4 4 pyY/ evident-ly‘géé over to unity, so that
three of the four terms in the uniform sohtifm are reproduced. The

proof for 1i remaining term requires more than average manipulative
skill and ws shall not pursue it here, Yustead, we offer a gimpler illus-

tration of the method. AN

Problemn 14. An investi gation ra variform member leads to the result

o_w [] B \‘* 7 :I,
L ORI E (k) T T(vE K, ()
where NSVt —=dn2h, L=k A

It is known f-ha{lgs % becomes indefinitely large the member tends to
uniformity,siq which case the golution is known to be

?

’"\'.’f” 0 — i_i [1 — sechnal.
\ no
}a's reguired (o veconcile the results.
We have L =h4+X= };(1 + ?)
L

AL A
P2l I E i

w{It — B %‘r = nd.

Ceism 9
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Testing our belief in our unproven asymptotic formuis © . Hx, 15, and
7-6(8) .
o ' eﬂ‘ . — Ty ey
" Iﬂ(x) - (TZ“W?, Ifﬂ(x) > (2_&3) £
we have
LT Rol) > - exp (ot — I} =
-Similarly ' QO
: s exp(—anl) A
I(vhHK (4] }_)_Wﬁ& . & O
Hence \J
vh{ } - htcoshn), N
and the concordance is established. N\

~ These problems on varizhle bars furnish physi' #al cvidenoe that the
asymptotic formule are independent of the apdér. By puiiin

I—H ﬁf@)}\ )
A

we can, by 2 proper choice of 7, wake the resulting funciions to be qf
any order we like. Whatever the ordor may be, the bar breomes uni-
form as 4 increases indeﬁnjt-ély: And there is only one sciuiion of a
particular problem for a Wnitorm bar,

£ 3
L §
7 7

Ol

R EXERCISES
b\

L In.the problem of the uniformly loaded heam, prove ihat of the three
denominaters tndor 4, B, &so., none can be zero, This proves that no a.rljusmfent
of the cotstants will make the solution depend on the one type of funetion with-
out the'ether, This ix not vsually true of éolutions that depend on J, and ¥,

' “gfgire further that the denominator under 73 is esgentially negative.
...\: 2 A cantilever of length 2 hag end load W and end pull P, The mom(:nt_ of
\inertia of section being given by [ = H{x + &)k, prove that, with the notation
of the text, the refaining couple & at the wall is given by

VOUL(SB)R (WhE) -+ 1(3h3)K (vib)}
= SWARHI,(vB)K \(vht) — Tl vh3) K (vIt)).
It is known that, whon the soction is uniform, the corresponding solution Is & =

(W/n) tanhn). Reconeile the two results, the latior being the limiting form as
b increases indohinitely,

3. A cantilever of length %\ bas uniform Ioad w per unit length and end poll
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P, The retaisiuz couple is ¢ and the momoent of inortia of section at distance

: I = Hiz + B)/h. Verify the following dotails of he analysis.
squation g

B :—B%k ¥=C+ Py -} Jua? — wig,

The assumr: i of & partioular integral of the form ¥=u -+ Bxr-+ ya? leads to

: .r'r('f _ E) . . ?_JU (;\ _1 ) w_ 2 ?
R e AU ) e R I N
senfary funetion is <\\’
g 2 AT (vet) 4 BE(weh)), ¥ = dn?h, 2= o + &, \”} ’
and the end condibions at the left load to ) ) '\":’&"
— 4 = 2BRYE (RE) b avK (vhb), ) O
B = 28R (WhY) — vl {uhd), \\\ D
The right ¢ being free from applied couple, we de({uce.Q,,
L N B W STV
W nh{ } AW
whers A .
: RN
[ 3= (5) + 20— wUEEEOR — KR,

{ )= LOBK NI L(ROE ().

It can be shown that, in the ca,se.of’\}uniform beam, the corresponding solution
) B

” S
G S i

= 1.
F 4 N
e coshnk
N
LD
.OXM
¢4
Ve \Vl
’\ N/
R\

\
s,'::’



CHAFPTER VIII

Applications to
-Hydrodynamics and Elasticity ~

8:1. Tidal motion, R \)

The problems so far discussed in illustration of the Shtory have
been of a relatively simple kind, involving but 1ittl€ Byalysis. We
come now to a number of problems of somewhaty Wire somplicated
type, beginning with surface waves on a liquidd ) These rre distinet
from waves of expansion which are propaga@,d throughost th?. quy
of a medinm, like waves of sound or lighty7afid a further distinction
is drawn according as the liqud s relat;\zély shallow or desp. We
begin with the former. O

In a current of liquid, the motidn' of the particles iz secular and
the Liquid continwously moves forsgard with the current. The contrash
in wave motion is the presu.mpt:idri that a particle malkes oniv a limited
excursion from a mean posifion, its displacement being a compound
of vertical and horizontalgicillations.

Tt is first necess tj(to’ get up two fundamental equations. One of
these is a physical e%ation, kriown as the equation of continnity and
based on the incompressibility of the liquid. Tt states that the mass of
liquid in an :§=§eciﬁed space-element is fixed by the volume of the
element an@{é invariable. The second equation is purely dynamical.

Congider a horizontal canal running m the direction OX. Any
surfae@\phenomenon will be presumed to be uniform across the breadth
of t{m canal, 5o we are working with two dimensions in a vertical plane.
“Bhe = axis is in the surface of the liquid in i{s rest position and we take
Bwo fixed vertical planes L, M défined by # and @ - 5. The surface
breadth in L being 8, we take % to be the mean depth of the possibly
non-uniform eross-seetion A, s0 that 4 = B}, )

When the surface is agitated by a wave we require two mMovIng
co-ordinates, We take 7 to be the small surface elevation above the
rest position, uniform across the breadth in plane L; £ to be the horl-
zontal forward displacement of any particle in the plane L, so that-

the velocity 9¢/6t is uniform over the plene L and extends from the
124
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surface to the canal bed. The justification for this assumption appears
in the consistency of the results.

The raie of liquid entry into the lamine LM from the Teft is @ =
bhOL[Et. e corresponding cxit across M is & + 8. The accession
—0¢ in the lamellar space between L and M canses a surface rise
90t over av area measuring b by 8. This gives

oy ¢ { 85}
b8 =—_ {bh %8s
ot oz | o)

. . 0 A

equivalent to by + .— (bhE) =0, ¢\
o NS ©
ag the equasion of continuity. ¢ ‘

Coming now to the dynamical equation, eonsider 2 element of
length 8z 2124 small cross-seetion a, 80 that its mass is}:ah and moves
with an acocleration 02 fo%. This acceleration is)edwsed by the excess
Pressure al trpe one end as compared with thesother, and $his in turn

is due to tha difference of head at the planed$\’and M. We thus have

p2¢ (B
0 — b= — q— 3x
P o 5
. prg N
or, ‘ é':: —yg 81;
e o
We can now oliminate ¢ aﬁ&‘ derive

N\
N 2 a?} P
@ b\ al
The pa.rf-.icuT{gr',&ﬁé of a uniform canal, with & and % hoth constant, is

not onr iII}{J\ie{ tate concern. It evidently leads to

) Py o
At gt 22 o

'"\\ 4
i the solution i known to be waves travelling with VCIOCit'Y‘ (gh}}
aud possibly givin g standing waves. Leaving this aside and coming to
tanaly of variable section, we agsume that 7 has a periodic motion of
small amplitude and proportional to cos{wt - ¢). We then have
ig..{bﬁ@}+b_w2ﬂ:0.
dax dx g

Much of bydrodynamics is so diffienlt that it is common practice first
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to solve the necessary equations and afterwards sec:: tho problem
which the solution fits. One of the sitnplest hypotheses “hat one can
make in the above equation is to treat 2 as constant ake b pro-
portional to z. This gives a crude representation of & ¥ «d egtnary,
of uniform depth, that fans out from the ori gin, The epiiion becomes

d®y | 1dy w®
—F By =0 B="_
e gk

The solution which gives a finite clevation at the orj gin ix = = Bfyks),

and if we suppose that the distance to the mouth is A +
_sca has a tidal rise given by 5 = € cos {wt 4 ¢}, the soluii: g
J o)
B = 2 0 eos (wt
e R
fits at both ends. Tn view of $he known steady. dacline in +
value of the maxima and minima as we moweso the rig
intimation of the inerease in wave-height gy the tide o

82. Canal of finite length, 0
The above problem s deedptively simple and there a: very few
like it. We turn instead te the problem of the canal of firiie length,
Reverting to the equatignfor the umiform canal, we have
%N o2 2
‘\caigx_a_g_, 62:(},&’
9, ox? o '
. N
showing that, the velocity of propagation iz “ due to a fall through
half the depth™. An infinity of solutions can be built up of the form
O i 1
o g = S0y B0 met,
RN _ cos  cos
Datif tho canal is closed hy two vertical barriers at  — 0 and # = A
tie fluid can have no harizontal velocity there.. We accordingly have
a8 boundary conditions
Eﬁ =0, =0, A
ol
A suitable solution is then § = B sinma sin (met -+ ¢), provided
BINMA =0, m) == a, 2, 3, ..,

This gives the possible frequencies of the normal modes of vihration,
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_ where overs
the same
It is
canal. If
of contin
an integr.

surface-particle goes throngh its equilibrium position at
ant.

al to inquire what is the analogue for a non uniform
::ple solution is desired, trouble arises from the equation

. Suppose we solve the equation of motion for 7; then
i needed to find £, which must be known in order to
oundary conditions. Very few expressions involving
ons are readily integrable, a difficulty similar to that™

encounterc” when attempting to evaluate Fourier coefficients. {ﬂtg:l:-
natively, i¢ == solve for £, we have to differentiate to find 7 and t{ie‘reby

loge the ety of the wave form. « M

equation for y we assume with some ggnét&lity that

“fiocz?, The equation becomes (Y
T
de? ' zde g < N
where o iz o constant. \
This se, 1s readily soluble; bui; ouf chance of finding an integ-

. .
based on the relation ~3%

L 3
LR Y

& (PO BOYR Byt B,

Comparizes with our stan\dg-lﬁ 3-6(2) gives
T=2ep, 2y—2=g—yp, i”:%
ih ,\r‘}\ ’ |
NI = T (Ba), by oc o] (Be),
the int-egtg{?:\m?iii;y of
A bh¢ = — [ dx
lﬁ{ﬁgﬁed by taking

atg=yn+2)—1, g=2—1%-L
P:]_’ G’,:O:ﬂ-.

As an illustration we may take g = 2. The problem and its sohution
then roads: If the variable breadth, depth and cross-section are given
by"
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the equation for 4 is

d f—{—:z:dn} w? { + a2 o
SIS AR ) B T i p) R
dx{ fods * g .
The substitution z = f +- z gives

21 {z@}—]-wg‘g 2p =10

— 2%y =),
2R W R T A
or, . R
d  1dy 9 " . w2l A\
1 — .1 — A ] 0, == — = o
I P L vafi O
The solution is verified in the usual way to be AN 3

N = LJD(IBQS"Q) -+ M Yu(ﬁzs'ﬂ), N ~:\ ’
whence we derive \
Af ’ xo,\\./

J2 e e 4, &

-_._.‘B_ E.—._f.o ?"?(JT_-.' ’::}\

5 QO . N
= 37 ) {LJl(ﬁiz:‘?{?‘) + MY (B2,

If the ends of the canal are.ffféﬁ“ned by =0, z=7 and 2=
¢ =f+4 A=, both ends arg{¥elocity nodes if

N\ s
0 = LIB*™) + MY (8™,
D=L (B8 4 MY (B0,
The elimination: @f\the constants gives

SO T ey,
N (8™~ ()
This_tfahscendental equation determines f and thence o and the
nosthal modes of vibration, .
Translated into figures, we find from the tables that J Y= ():9;’4
when the argument is 1258 and again when the argnment is 1571
Thus
BEE 1571
B
whenee we derive t/f=1-161 and f-=6-2). This means that the

fictitious origin is distant rather more than six times the l.cngt.h Oi thi
canal; and the variation in mean depth and cross-section is about
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sixteen per vent as between one end and the other. The period is
caleulated tiom _
g 4B _ (2562
9 gfd 3

Hence for o model tank 1 metre long, the water being 10 em. deep at the
deep end, 2 Lave w = 948 and the period 27w = 0-66 secs.
The position of the surface-node is given by 5 = 0, so that

N
ToBe) ¢ ¥y B) = 0-954, A
£
Interpolating from the tables we have 87" = 14-17. As gf*" {1956
we got N
&=z — =52 em, @

This is about what one might expect.

A good deal more latitude of choice is attained.en approaching the
problem thesngh £ The elimination of 5 from.fhe‘dynamical equation
and the equution of continuity gives P \4

d(1d ] ah
— 1= — (bR A E =0
& o O ‘Ln ¢

™3
SR

¥ we make the same tentative.dssumptions regarding the breadth and
aren, we liave, where o is a{m\nst-ant,

N

ar - N
e 2p—q ﬁ\F {P@ —g—1) Um} £—0.
dx? x \053,« 2 g

Provided 5 —- q ‘%z'\'ﬁsthis is solizble in terms of Beasel functions and
comparison \ji\’r.-h/the standard gives 3-6(2)

=208 —q o —nyi—plp—q—1), y—2=g—p.
e
Sinc{\,. l

Bhe oc g ] ()
A comparatively manageable form is obtained by making a +p=
1 ny. We then have
niy? = (a + p)%
w2 — o = 9pa +pP= —p(p —7—1h
P20} 2p-—g—1) =0
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It follows that either p is zero or else the fipst compar:-oi aquation i
satisfied antomatically. The former alternative gives
1o
a =1+ g), y=141g, moe= ot

As a partioular case of this we can take g to be also zere. he solution
15 then in terms of x4/ (@), which is trigonometrical i orrect since
the canal is then uniform. N\
The second alternative gives
1 !

o=il+q~p y=1—ip—yg), n- -
= T q

This opens up endless possibilities and we may illvat:
P =3,q=2. The problem and its solution then vead: I
breadth, depth and cross-section are given by !

by taling
3 variable

N ;

b=nll b G Afie D

[ s Ao e

the equation for £ is R

A a ] e,
i [ i AL ] e

2
AW

-

B(f +apds WSV 7 g
or, L
d I’}Z 3 Bfw2 _
Bl o)+ Sre=o,
50 that
Y sde o o 4Bfw?
T TpH =0 Bt
\V
The squjt{'Qni ]
Q) €= MLIBY) + MY, (peH)),
N\
and~éorrespondjngly

N\
1=~ L e 1 )

- As an llustration of the difficultics likely to be cneountered in

translating this into figures, suppose the mean depth shows a & per

cent variation as between the two ends. Then the breadth varics about

10 per cent and the cross-section varies about 15 per' cent. This may

legitimately be described ag gradual. Suppose ¢ is a zero of the cylinder
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function thet delines £; then the next consecutive zero is about
¢+ = The vnd conditions therefove give

gt et

Bft T e _
Since we aasnming that I/f == 21/20 we have (I/f) = 41/40
approximai-iv, and ¢ is about 407 This would exhaust the possi-
bilities of a7 known tables,

It 18 not irmossible for the solution to come out in terms of the one

type of fanziion without the other; compare 7-12, Bx. 1. For examplé)y,
the thirty-£7 b zero of Y, is 132:273, and if this happens to be~the"
value of £+ the firat equation of condition would give I == 0, .The
next zero id give BIt— 115416, whence we concludeybhat f is
about 17-7- If A 1s known, go is ﬁ the value of @ thep\rﬁapends on
the adopted value of A/B.

/ \.‘
8:8. Surfacs waves.

\ {
f motion hitherto considered, WhP’rB the horizontal dis-

The
turhance sumed uniform throughout : the dcpth of the liquid, and
the verti ttion of a particle is morevor less ignared, is known as

tidal. We nyopose now to take a Jégs Testrictive hypothesis and to

work in werical co-ordinates, “Fhis will have the advantage of
introduci placa’s equationgwhich plays so large a part in classical
mathemaiiz:! physies. ¢\J

Let » be the com}}onent velocitics of a particle in the diree-

sreasing v, Py respectively and consider a volume element
defined hy 1he ccmxlal eylinders of radii r, r + &; by horizontal
planes at je- velg, -v\.a ~- 82; by axial planes of azimuthal angles 0,
8+ 38.

The rates b}‘llqmd inflnx across the inner vertical face is

o @, = urd8 8z,
The \orres} sonling efflux across the opposite face is @ + 8¢, and

the resulting efflux from the v olume clement 18

8Q; = — (u-r 56 82) or
or

Similarly from the top and bottom faces we have

8¢, = g (sor 58 Br) Bz.
Ly
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For the remaining pair of vertical faces we have

0
&)y = 5 (v 8r 82) 86,

The incompressibility of the Hquid thus gives the equalion of con-
. tinnity

g on o
L LTI
W Tty A

It is common practice in dynamies and electrostatics to adebf-an
energy potential whose negative gradient gives the force insahy par-
ticular direction. A similar idea is adopted in hydrodynumick; a velo-

in any direction. It corresponds to a type of motiondks

tional, in contradistinetion to rotational or vortex whet
Denoting this velocity potential by ¢, we hc{*c by deituition

B R S

H = — =y — E == »
or FeA TN 0z

The equation of continuity becomes\™

o 9B} i, %
—dr = a3 =0
or IT or }; 2o T R ’

and this is equivalent tOoI:é,%la.ce’s equation in cylindrieal zo-ordinates.

The only satisfac-j:cﬁ? way of attempting to solve a partial differ-
ential equation of thig type is to assume initially that ¢ has the form
FH, where F is@function of » and 2, whilst H is a funstion of § alone.
The equatio;{@},ﬂ'theu be written

ST S
H a6 dz%

., a’r
RN
%ﬁge‘ﬂ is a variable independent of » and 2, this implies that the middle
term must be a constans, and with a view to Fourier analysis we pub

Led

| 7dg T T
so that I oc coy (nf - €), with n an integer,
The equation is now

12 o)

0.

-
or

2 &
_=ra_F_”'_F:0_

[
ror | oy gz2 42
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There is slrcady an adumbration of Bessel’s equation, and if we put
F = RZ, where I 1s a function of + alone, and Z a function of 2 alone,

we have
F(1d/f dR #e 1d2Z
E!;a;:("‘d?)“?z}*} Tz~

As before, wo conclude that the last term must be a constant, and in
our present case if is convenient to take Z oc cosh (z -+ £). This leaves

1d{ dr g W
i Pt L | N
7 dr [? dr} T (K :-"2) 0. & Y

with the soiution g >
P §

B = AJ (xr) + BY ,(«r).

&

We now assume that the horizontal plane deﬁned‘"&} z=01is the
surface of still liquid of uniform depth k. When tlie’ water is mildly
agitated, & purticle at the bottom can have sqyért-ical velocity, so
that

NN

W= — % _ 0 when Y= —h.
0z &N :"

This condition is already fulfilled hysour choice of Z.

There is nothing in the apalysis so far that specifically connects
it with wave motion. The c@n}ﬂexion is made by introducing a periodie
time factor into the veloc{{y'potenti al, which thus becomes

b = {4 (icr) HBY ,(kr)} cos (nd + ) cosh x(z + F) cosmi.

A¥

If 4 denote the .siight surface elevation ab any point, its vertical velo-
city is givcr\hy\."
O . )
A\ 7=—-- when z=0.
SN a2

As'ihys g proportional to cogmif, integration gives 1 oC sinmt,. so that
the origin of time is taken when 3 is zero and the surface-particles are
moving through their equilibrium positions. )

It remains to conncet the various parameters. It is show_n in texts
o hydrodynamics that in the absence of viscosity apd HT}PI‘SBSCd
forces other than gravity, the plane 2 = 0 is a free surface provided

e 0
w0

Q.
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This evidently loads to
gx tanh wh = m?,

where incidentelly tanh «k is necessarily less than u:ii v and is asymp-
totic to it for large values of xi, o
If the Mquid is confined betwoen two retaining defined by
r=a, b, the horizontal velocity % must be zerg at oy ! . of these, so
that £\

u=-—§§—$=0 when r=gq, 5.
or

The arbitrary constants A, B can then be climinated ot w

L(ka) Tk D
AT AT

a8 the equation to determine «. ) N

For the sake of arriving at figureswe suppose firsti taas there is
no inner bastion. We then discard\¥, as giving au isiinily at the
origin. Nexf, suppose the water isfivided gnadrantally by iwo vertical
and perpendicular barriers, At f{g’abh of these we need no normal velo-
city, so that RN

ANy = — % =0
~,> i)

This is achieved‘l}y;\d‘r'opping the phase angle e and putting # = 2.
We now have

\“\‘?Z’ == dJy(rr) 0320 cosh k(7 + k) cosmt.

If the, duter boundary is defined by r=a, the radial velocity must
there(be' zero, and' '

AN w=— 0 Jiten —o

\J o )

/AN

N\ %[‘he Tecurrence relation
Wt =Ty =Ty
then tells us that the required zeros are to be found from
Ty(xa) = Jy(xa),

To find, say, the first root of this equation, J, is the slower in taking
off from the axis and its first zero is beyond the first zero of Jy, 80
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the requir<i root is rather less than the first zero of J,. From the

- extracted
x gy Iy
3-0 0-33805 0-30906
31 0-30092 0-32644

we deduce i5:ai the required zero is 3:054 = xa.

For a +::k whose depth equals its diameter we have wh = 6-1 and{_ >
the distizciion between tanh A and unity is not worth making. I the
digmeter i & melre, we have R\

m = (gr)¥ == T-72, (»'.’;.
and the p 0f of oscillation is ~AV
2 ogise o0
W 7, N
‘\
EXEREISES

1. Dis i tidal waves in a.'ghan'riel of uniform breadth, the depth shelving
uniformly zere down to thedopen soa where there is a tidal rise =
C cos{wt

Prove tha,tt\]{éiﬁnction is of order zero and the argument pro-

portional
2, Dis e normal jmodes of vibration for surface waves in a semicircular
tank of re -anddopth &, Compute from the values
p ..\:‘;'\ " g Jg ‘}2
§ 18 0-8400 0-3081
\ 1-4 0-2818 (-3300

8-8\Heat conduction.

The analysis for heat conduetion in cylindrical co-ordinates is so
close to ous previous work as almost to amount to & transcn?t. We
nerely call ¢ the temperature instead of the velocity potential, and
pay attention to a few necessary cocflicients. Taking the same cy lin-
drical space element as before, we let H, be the heat per second that
flows across the inner vertical face. Then H; -+ 8H; flows across the
opposite face, and the accumulation in the volume clement is —8H,.
The amount & 1 depends jointly on the arca whieh it crosses, the con-
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ductivity w, and the negative temperature gradient radislly, Wo thus
have

~

"= 2‘5 krd08z, —8H, = — 1

y or

o

[ s
S
1

i)

18r = —+x 80 8z,

o

3

(k]
wd

Similarly if H, flows upwards through the lower face wo have

_ _ o4, fa .-82‘#’ s = Q"
—8ll, = — 5, Ce= i 8 &r 808z, \
Laterally we have K N
31T, x 2% \ >
O, =— 250 =200 5,508, )
» a0 YRR
¢

"‘\ - -
The total heat-gain shows itself in a rise of temperaure. Taking density
p and specific heat s, we have the heat gair\per goeond s
AN

ps E,fé 7 Sr SO0
ot P\

The equation for ¢ is therefore o0

oy 52
O _I_E’Taf} :}.,_a.f+_1_pi6:'o_sa:‘é,
rorl o a2 T 2o . W
MY
The theory of hfi(‘eﬁnduction Is an extensive study in itself and
28 this is not theplaee to pursue it, all we can do is to indicatc how
Bessel functions-gedasionally play a part in the analysis. When the
temperature hag'deased to vary with the time, we have what is known
as the “ steddy state > and the right side of the last equation falls out,
thus simplifiying the working.
. \mé{ ying g

»? oklem 15— Hot gases are conveyed through a long straight pipe which
N ndifferently lagged ; it s reguired to Jind the temperature dustri-
bution throughout the lagging, whose internal and external radii are

o and ¢ respectively.

A definite length iz under observation and a sufficient number of
t-hermo~couples enables the steady temperature distribution at the
outer surface to he expressed as a Hourier serics. Tt can he assumed
that the temperature is constant round the circular cross-seclion of
any coaxial eylindrical surface, The temperature of the surrounding
medium can be assumed uniform and will serve ag the origin of the
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temperatire seale. It is assumed that the heat-loss into the surround-
ing mediur: Is to be accounted for by a constant coefficient of emis-
givity 4.
The p:
discrimi

sivnlar type of Fourier serics adopted is a matter for earefal
on since it is very easy unwittingly to introduce extraneous
‘hich are not justiiable. The mean temperature of the
¢ 13 hardly likely to coincide exactly with that of the sur-

rounding ux:dium, so there is pretty certainly a constant term present,
We accordingly suppose that the temperature of the outer surface is
given by . O\

e = g -+ 61 OBV - @y 0822 - . ., O

+ by sinez 4 bysin2ur 4 ..., Y
. &2
The number of terms employed has to be justified by:,\the number of
thermo-couples; but in any case the coefficients dre: uniquely known
from the otwervational data. AN
Under ike given assumptions the equation ot ¢ becomes

2 104 00

FERLE N, >

If we suppose the solution is of the form ¢ = R expiwz, where R is a
function of + alone, we have

cwzz'j':\l dR

- —wlR=0,
+-rd'r @

This puts u in possession of solutions of the type
¢={d Jg(aqi\+ BE wr)} cosar + {Clfor) + DE fwr)} sinez.
Further l’ﬁ;i%lﬁlat-iﬂn shows that these in themselves are not enough
to satisffour requirements and, as often happens, advantage has to
be fakken of the solution
¢ = p - ¢ logr,

where p and g are constants. The existence of this solution.is readily
demonstrated, and by taking various values for « we can build ap the
solution

¢ = E{d,Iofw,) + B,Eofw,r)} coswzz
+ B{C, J(wrar) + DpEofewnr)} siney
+ p+ g logr.

(& 1503 10
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At the outer boundary, this solution must coineide wiil /.. We con-
clude by comparison, firstly that all the values of w aie 5:vza by

W, == AY;
secondly, that the independent terms are related by
Gy =1p -+ qloge;

thirdly, that the other cocfficients are connected by the 5.3ations N
AnIO(ﬂ"UC) + BHKI](WUG) =y, ’:\"\’
Coly(nuve) -+ DK (nvc) = b,,. } -

unknown.
mitted by
gives the

Each of the last three relations leaves us with effective

Coming now to the heat cmission, we equate thi(

any surface element to the heat which it receifas
relation \
N

dd g
—x = = ke, <o
“or ¢ f§
The application of this to each term, Qf’ﬁi{}l' geries gives
— M ¥ g loge) = hay.
RN

BLE ) — AL (me) — ",

(\J KR
> ib,
ANDK (nue) — O 1 (nwe) = 2272,
7l o
¢
Taking advantage of the relation 7-9, Ex. 1 (iii)
2\
4 ; 1
§ LK, - LKy = -—,

W\ nee

ad

a,ll:’&hé constants are now determinable by clementary algebra and the
S\golution may be considered complete.

EXERCISES

L. Show that the heat per second that crosses the scotion defined by z=10
can bo expressed as

2neh _ b,
—X o 2rudZ{C, I (nd) — D, K (nod)}.

v

) 2. Prove that the amount of heat por second that erosses unit ares of the
inner surface averages cha,/d,
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8-5. Treozverse vibrations of a tapered rod.

In ¢ertzin branches of applied mathematics the square of Laplace’s
operator iules ils appearance; this is notably the cage in elasticity
and in (v motion of a viscous liquid. The fundamental equation is
then of “he fourth order and usually requives more than two different
types of Hossel function for its satisfaction, We begin with & zelatively
simple i,

N

Problem 8.~ Discuss the transverse vibrations of a tapered rod. e
In th
AssUme i
to the ix

rod is

stussion of the transverse vibrations of a taut string) we
sbsence of floxural rigidity and we ascribe theﬂ?ibf&tions
The essential difference in the parallel dificlission. of a
ne fexnral rigidity is taken 1o be paramotwt, whilst the
stresses are more or less ignored, )
1 thin rod to occupy part of the mf;{is. and let 4B be 8z,
o[ length, the origin for the momelt Yemaining wnspecified,
crose-gection at A; I the momg—;ﬁt of inertia of the section:
modalus for the material ; p.”she density, M the bending
J € the shearing force. Ingthe approximate theory of bend-
ing force is the negativegradient of the bending moment.
= is given by Buler’s f(){\fnula and we have
L8

—_— L = N

(?%xax ; M=EI

%y
8a?

where 7 35 the deﬂeqti&;: "The mass of the element AB is padr and its
acceleralion &y ot ig taused by the element of shearing force 8¢}. This
'"\'Q.

gives \;
N\, n2f a2 { 823:}
&l _,9’ Dorma - = — EI— 83-
N P oz o oz s

Smce\qséf.lizttory motion is possible we put y = X expiwt, where X is
dependent of t. This gives

2 {u _dai‘i} — pue?X.
da® da? '

In the simplest cage where all but # and X arc constants, the equatiop
is soluble in terms of trigonometrical and hyperbolic functions, equi-
valent to Bessel functions of order 1, and the matter is treatct% in
various texts on sound, structures, elasticity, or strength of materials.
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The most likely departure from uniformity will cowme from the
cross-section and its modulus. There is then no standard echnique for
solving the equation; each particular case calls for individual treat-
ment, with the result that considerable ingenuity is often required for
effecting a solution. If, as an illustration, we assume th. rod to be
uniformly tapered, we can put @ = 42? and 7 == Ha* Tis afjuation
then hecomes

_ A{sz

o JAX A =T N
) * HE

& [xg P2X
drz " d®

: { \‘
. . {
At this point, two methods of procedure present themspledy but
before advancing, it is possibly as well to recall certain fogilres in the

solution of linear differential equations. A
The equation . ~\ 4
d_g —5% By = i
dx d p N\
can be written indifferently as o\
(D—2D—8ly=0, D—HP—2y=0, D~ e

The operators (D — 2) and (D‘Q;S}vhap_pen to be permufable. This is
by.no means always the vase, as'the reader can readily verily from the
two operators zD and 225, Ag a result of their permutability, the
original equation is 1ch\et‘ss§1rily satisfied by any solution of cither of
the equations . 3,

OB — 8y =0, (D— 2y ==0,

N\ S

Le. by 4¢% afild'Be?», As only two independent solutions are required
for a secm@\\oﬂer equation the given equation is solved,

Alterndtively, certain equations possess & type of homogeneity that
may hg illustrated by

N 7
\\ N/

\ {2 ;
\' mﬁ‘ﬁf—}—t"»m@-—f—tiym—-ﬂ.
dz? dn
The substitution
s—¢ o244 _
’ de  df

leads to an operator & whose properties may he summarized as

i
Pz =8 =1 —2), ¥"H)=e"(O + o),
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The al:ve cquation would then be written
-1 439+ 4y=0

and soivod as a linear equation with constant ecoefficients.
Appiving the former method in the present mstance, it is readily
verifiedd {fiab our cquation can be written

{#2D* + 8zD® + 121° — kX = 0. N
The ouiy hope of expressing this in two permutable operators i¢'to
wTite A\ -
(@D? + aD -+ B)sD? + oD — )X = S\

V P

%

It ther: appears that the two forms are consistent if g wﬁ\and we have
(wD? + 30 4 B2)(=D? 4+ 3D — 23 {F 0.

Tt follewn that a permissible form of X is.an E’@l‘utmn of either of the

equations

d2X 34X ﬂ?X 3dX B?
S - € 0 ——--X
di® T & dx _} Vet +x de
We acerdingly have QO
¢\
X =a {Asz.zfcxN\B’ Yy(2het) - OT,(2ka?) 4- DE,(2ka?)}.
Using the secondx method which only differs symbolically from the
former, we bhouJ\ write
O ) 29 — {8 — DIX = i,
whence &

AN e 2)(8 + 1 — DX = F4X.

\"4
B)N slight rearrangement we derive

eS| e B(E + 2)X = X
It follows that any solution of either of the two equations
e+ 9+ BRX =0= {0 +2) ) — B} X

18 satisfactory, and it can rea dﬂy be verified that these are nothing but
a disgnised form of the previous pair, leading to the same result.
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By differentiation we then have

‘f{;’f — —k™"AJ, + BY, — O, + DK},
i
2
‘_ij — k2% AJ, + BY,-|- CI, -- DK},

the unwritten argument being in every case 2kxt. The final drie
tion of £, and thence w, is decided by whatever boundays
we adopt. If, for the sake of ilinstration, one end is defive..

and 1s free, we discard Y, and K as giving Infinity at thoahgh
the other end is clamped and defined by # = A, so that X >0 = X',
we have A

AT 200 4 CLRY =0, (¥
AT 25N — CLOEXY) = O
whenece AN
Jo(2kX) J@@@g o
TR0 T T,(2Y

as the transcendental equation forghe determination of the normal
modes of vibration. &Y

any
Ny Y

(" TXFRCISES

1. In the last equition! show that J, and J, must have opposits signs and
deduce that the equation hag an infinite number of roots.

2, Tt the rod id'efircular soction, the radius being proportional to of%, prove
that tho solutioh involves functions of order 5 /6 with arguments proportional
to a8, O\ )

3. I&}V’&gate the gencral case where @ i proportions] to 2 and I is propor-
tional ti2™. Deduce that the problem is soluble when

NS
@\ Im—=n-18 or m==n- 2

}”his does not exhaost tho possibilities,

8:6, Buckling of & cirenlar dise.

The mathematical theory of elasticity has to be classed as a de-
finitely difficult subject, and it is not rendered casier by the Curtesian
method of approach, which happens to be the way it developed. The
analysis required for the discussion of further problems is too lengthy
bo transcribe here. The reader must accordingly be asked to accept
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.| equations on the authority of the textbooks where he can
nstification and master it at leisure, unless he happens to
fortunate position of being already familiar with it. With
wilon we can contmue with our applications.

1 3 ——A uniform cireular dise, whose middle plone is the z plane,
Lickness 2% and radius a. The periphery 1s subjected to uniform

| pressure P per unit area. It 18 required fo envestigate the,
value of P which causes the dise to buckle.

'-;a;blem is in some respects the two-dimensional a.nalo'g’ae of
but the analysis is more complicated. I we suppose Jthat a
whose co-ordinates were r, ¢, 0 moves to 7, ¢, 2, we ean discard
of the symmetry about the z axis. It is theshown in the
hat the equilibrium equatwn has the fordl)

the substitution r = ¢, and w ntmg 9 for d/d@ as before, the
i iakes the very simple form B3

(e e 298 )z = 0.

The cperutors are evidently.}g?erﬁutable, 50 that any solution of cither
of the equations e
9% — 0, (e 29+ =0
will be a-c-c-eptablg("i’lie former gives
.1\'5 2= A0+ B—= Alogr+ B.

The ia Tfﬂréquatlon is nothing but Bessel’s equation of order zero,
N &
O° (e 2H 4 e =~ + 1
m\ . T d’f
\ 3

We are thus in possession of the full solution

z= A logr 4- B + OJy(kr) + DY (kr)

— k=0

containing the requisite number of arbitrary copstants. Henee also

_‘;E — Art — ROy (k) — kDY ().
i

If the digc is complete, without a central hole, the values of 2 and dz/dr
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must not be infinite at the centre. Since Y, goes to infinity lnyarith-
mically at the origin, we must have both 4 and D zero, the selution
reducing to

2= B+ OJ,(kr), j_f — RO (),

The arbifrary constants are determined from the boundary conditi
there being two standard cases according as the rim is clam
We propose to deal with the latter case. N
When the boundary is not claroped there is neither dis:latement
ner bending moment ab the periphery. Following the texthdoks
are covered by ‘
z:O:d.jz. Ed% == ':
e de ‘ "‘\

where ¢ denotes Poisson’s ratio. The former g@dition is equivalent to
B - O yfka) =po\”

As for the latter condition, the equa’s’iqﬁ for the Bessel function shows
that it is cquivalent to N

kaJ o(ka) =T — o), (ka).

As Poisson’s ratio is usuallyabout 0-3 and not a subjcet for meiicnlous
aceuracy, the equation ig{ghite easy to solve with the aid of the tables.
Tt has an infinity of o683 bus all except the smallest would corzespond
to highly unstable &onfigurations. The formula for # shows that the
cross-section of»¢he’ middle plane looks like the first half-loop of Jo
and its reflectioni’ The constant B plays no part and mi ght have been
dropped; i _porresponds to a bodily displacement of the disc and has
no stregk wifect, The constant C' remains indeterminate and gives a
scale \éﬁbct. It is of no consequence since if the buckling load is reached
bhe damage is usually done. There remains the constant k, a convenlent
“abBreviation defined by

3P(1 — a?)

B=_"

LiR?
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EXERCISES

1. Taking Poisson's ratio as 0-3, solve the critical equation
adfx) = (1 — o) y{x)

by mearz of the extracted valies

z Jo Jy N
2-04 0-2009 0-5738 R '\..>
205 0-1951 0-5730. O

< W/
L 3

Hence conipute for a eiroular dise of diameter 10 cm. and t.hicknegsj mm. taking
Young’s mndulus as 3 109 gr. fom? ’\\
. A\ dz
2, Ti the case of a clamped disc the boundary conditidn wvevidently P 0.

Provo that this leads to J (%a) = 0 whose smallest roo¥ 19}’\'3317' Hence compute
tor the dise as abovo. 2\ N
3

X
N\ W

®)
5”

87. ¥ihvations of a dise. a

Since we have beon considesfby a disc, the natural transition is
to the discussion of its normalmodes of vibration. A dise differs from
a membranc as a rod differs\from a string; the flexural ’rigidity plays
the predominant part. '\]\h’ﬁolar co-ordinates 7, ¢ the vibrations of a
disc are governed by the equation

o :"'} J e 2 19 lﬁz_]zz=0-

f~éf§‘+ 31— [a_"rﬁ Tin TR
The sigui:ﬁ’egnce of the symbols is the same as before, with the afidition
of p whieh is the density. The analysis leading up to the equation can
b&iﬁmﬁd in Rayleigh, Theory of Sound, Vol. 1, § 218 and elsewhere.
The"problem is in some respects the two-dimensional analogue of the
transversely vibrating rod. The boundary conditions for a clamped
cdge are simple, Since there is neither displacement nor slope we
have '

z:o:-—.

¢

[n the case of a free edge, which implies the absence of shear and

N
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bending, the conditions are more complicated. They are vaually given
as
0% loz | 1 823}
J— —_—— —_——— = 0
or? + G{fr or + 2 oh? ’
8[6% 18z+1 822} _[_1—0- g2 [%__E‘ )
arlor " ror T 2age 8t o 7
We assume, as usual, that the normal modes of vibratios ALR) bc\ ac-
counted for by the adoption of a periodic time factor ex ‘g Wor the

azimuthal angle ¢ we assume the presence of a faclor o3
view to Fourier analysis. We accordingly make the substist

2 = R expi{wt + nd), \\

/N

where B is a function of # alone. The cquation &A% then be wriiten
AN
2 2y 2 (N 21 . o2
{d_ id_ "'i] R=IR, _#B< 3pa¥] — of
drt ' ordr 42 O A2

Alternatively R\
: {3‘2"(1‘}2“—3:&2) PR = 1R,

which is clearly equivalent, t0-the pair of equations
{e;?zf(&ﬁ —m?)}R = + 2R,

and gny solution of\éther of these is acceptable. Reverting to the
independent varigble r we have

AN
D) 2 . , 1P
@R + ¥ | (k2 - n_?)R =} = %2}5 + Ldk __ (kz - —)R
7 ¥ a

drﬁgj;’dr ‘ T dr
Thegalue of B is thus given by
~O B = AT, (kr) 4+ BY (k) + CL(kr) 1~ DK (fr).

Q -
The fulfilmen of the boundary conditions for any stipulated mode of
support leads to a transcendental equation which ultimately determines
@ and the frequency of the normal mode of vibration. With so many
terms present, this may occasionally call for a corbain amount of mani-
pulative skill. As an ilfustration we consider a dise which is complete
and free, meaning at rest and unsupported in a gravitationless ficld.

The dise being complete, the displacement of the centre must be
finite and the slope there zero, as already explained. This compels us
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to discasd the functions Y, and K, and to work with the more limited
golution

R = AJ (k) 4 CI (kr),
equivale:t £

2= {AJ (k) + CL(kr)} sinngél coswt.

The first +.i 1he two boundary conditions can be rewritten as

#R | 1dR _mtp (l=o)f, { R ngR} O
&t rdr 72 dr O\
7, (kr) is concerned, and in virtuc of the equation Shiich it -
i1z provides us with 'x

— 2T (hr) — (— {fch (kr)y — w4, (}5?)}

o\
Similsotr 1, 0kr) provides us with \ o
R L {m ’(7-7?) — w?l (k)

‘ N
NS

These «:n be modified by using.t t‘he recurrence relations

"c'}" = an _@?‘.&D ﬂﬂl - HI + xIrHvl

»

We eanelude that the ﬁ)&s\b boundaxy condition abr =@ is equivalent to

¢ (nz—un i (ka )—E-}caJnﬂ(fca) e P FRa? i
4, {m ot )L, (ka) — kal . (ka) 1—o

The se LOI;@:\}* bou_ndac[‘y condition can be writhen

SWrER  1dR W ] (1 — o) IdR R} o
N |, 2 R e .
NN dr I:ds-‘2 rdr 2

72 dr T

The contribution from J,(kr) is

dls )iy T
N dr ¥ dr ¥

By the usc of the recurrence formula we have, after a little reduction,

L= oty — e BTG} -+ (1T}
i
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Simﬂarly we can show that the contribution from f W) 13
-1—;_;—0 {n{n + m — AL (r) + (m — T )}
The elimination of the ratio —C/4 then gives

(R —n—m) (c) 4 eJ , 4(c) M= m)d (0) — (7 ], (o)

WP —n )] () — elug(c)  n(nd—n— m (e) + 2 mlel 54e)

where the argument ig ¢ — ka. This determines & and T:’-.-:z'-_j(:ga.\u}@nd the

normal modes of vibration for & given value of 5, N
EXBRCISES R4
1. Verify that the Iast relation can he written
+ 2?1___2(71 — b Ln :’\\':
4 - e} &
¢ L1 pq , x\ w
B YR
B 2 B fﬂ:-l. »—f_ Tn—;—_l + ’”’{n - l--‘r-.q.'_: JfH—I ’

2. Deduce that when there are no, ﬁiédal diameters, the relation becomes
o)
Ly(ha} ™ T (k)

Establish this resils indepeudgnt-ly.
3. In comnexion wi h@he}la&;t ¢quation, prove that the lunetion wl (e} {x)
has the value 2 when zr;x zero aud steadily increases wilh . Hence prove that
the equation cap hfwo:no root smallor than the first zero of of#), but must have

8 100t hefore the fitghzero of J e}, With o = 0-3 solve by the aid of the extracted
valueg W

} = 2(1 — g).

207 7, 1, 1,
{\% —0-25664 0-34278 48414 39179
NS00 —0-26005 (33006 4-8808 3-9534,

Hfméé’compute for & dise of radiug 2 em, and thickness } mm., density 76 gr.
\"ikg"‘é.c. ond # = 9 140 &T. per cm.2,
4. When there i 4 8ingle nodal diamoter, derive the relation frem No, 1
above and ostablish it independently.

How much of the modified argament in No. 3 can now he applied as an aid
to solution ?

4. If the digg b

. ¢ coriplete and clamped at the rim, prove that the diserimi-
nating equation i

Tuslks) 1, (k)
Jolka) ™ I (ka) "
Give an alternative form with orders n and » 4- 1.
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§-8. The nov-uniform dise.

Having examined the vibrations of a uniform dige it is natural to
examine the problem when the hypothesis of uniform thickness is
abandoncd for & certain variability, The law of variation needs to be
fairly slinple, say aecording io some power of the radius, and if we
put = c{n{r)* we can vary the rate of change of thickness, as we move
along the radins, within wide limits. If s is negative the dise has zero
thickness at the centre; but of course the disc need not be compiete.
Similazly if 5 is positive the central thickmess is infinite. The disc may,
then either be incomplete or be congidered as mounted at the end of 7
spindle, « O
The curious fact emerges that the solubility of the preblem by
Bessel functions depends on the number of nodal lines, %1&'0118 par-

tienlar case comes out in terms of the elementary. fapetions. The
fundamental eguation is given in the texts as O
0. \d
B 22,0 10z  180% 0%
LD LA TR [._z _._+,}§,\__2}+2Pk__3:0,
1— e var | el e T ror N\ od ot

U .
which ciosely rescmbles the corresponding equation for a non-uniform
rod, Iv the present case we have (™

=) 1=
'\‘..

s0 that we can rewrite as

(1 0O R 1R
dt ' w7t drr  rdr g

:"\".
where ' \’\\ - .
A\ ; K= 3pe(l — o)
AN 7= R sinme coswt, = T

e |

Further progress is greatly facilitated by the symbolical method, so
that N

(D2 — m2)3—9(38+2)(52 —mR = kaRe®,
whenee

g—?ﬁ(s+2){(3. 35— 22— mz}(gz — m)R = IR

or as a square; but

The hope of & solution lies in expressing the operat
we shall merely be

unless there is some re-arrangement of the factors

Q"
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left with the case where 3 is zero, as the reader can casil- - ~rify. We
accordingly re-arrange the factors in the order

+—m— 35 —2 & —m, F4m—3s—2, B i,

We can then write the equation as

e DG — 25) (O — -5+ D)o TG m— 35— 2% - L iR—JR.
The operator is now a square provided 2m = s 4 2. We ;'..-:-f:-f}{dlgg\ly
remove § and write RAY.
fe2me(9 — om 1 4} m) PR = k*R, m'}:‘"\'
which is equivalent to the two equations ¢ ’(; .

o
R R TR
dr? r dr B

N4
:I: k2}:.-!m- 2 R == i
o |

These are plainly comparable with oz éﬁ}.nda.rds 36(2} nnt T-3(1).
The comparison gives WV

§2

W
s &

W Y

1—2a=5— 4m, W op=m,

By = k, Q‘f’az — nit = wm{d — Din},

whence we derive O
£\ } f:, I3
) : m — 2
a:?m\\ﬂzs, B=" w="""_°
A\ " i

It appears that fhiy gives no solution when m ig zero, correspending to
a thickness Q}g\_ﬁrtional to the square of the radins. The next per-
missible v{{m of m is unity and leads to
\ Mm=1=mn=ny, a=0=s B=E¢.
)

@?ﬁsc is of uniform thickness and the solution is given in functions
of"the type J(kr). A certain interest attaches to the valne m == 4.
It Ieads to y=4 a==06=s B=Fkf4, n= 5/2, so that the functions
are of order half an odd Integer,
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EXERCISES
L Provs shab the fanctions are of integral order only when m is I or 2, Prove
also that 412 functions are of order half an odd infoger only when m is 4.

2. By v zing the factors in the order’
Lm—3—2 Y+m Y-—m-3—2% Y — m, ~
prove tha! :he operator can be made a square provided 2 + 2m 4 = 0. This |

leadr to '\\
2R 4dm - 5 dR [m{ﬁm + 4 » B0 O
P A T R

%, various types of function involved in the solutiongunder different
sroving incidentally that m cannot be zero andﬁg];&t functions of
appear; also that only two values of m canléad to functions of

Note that the argument of the functim;t}\}ieércases with increas-

mbogral -
ing 7. X
8. Fooot that the only other re-arrangement of the factors that will lead to

- — m®) first. Show that this gives & the unique
d the thickmess is proportionals ,fg:&the radial distance. Verify that

value
the oy raiz.

#R 3R B:wmt B
wErrmt e T
N\

These ar2 solnble for all V&IIK ofm and lead to functions of the type
MY W2k

m\J
\Y;
\



CHAPTER IX

Bessel Coefficients. Integrals
and Expansions A

A o
2\

91, Bessel coefficients,

o
The functions J,(x) of integral order are sornetimes ealicd Bessel
coefficients since they ocour as coeflicients in a _gertain expansion
whick we shell now consider. The left side of thew@eii’t-ity

exp {3z(t — t-l)} = exp (o) exp(’_.:%xgq)

can be expressed as a both ways imfinite §pics of ascending and de-
scending powers of ¢, a so-called La,urent}eﬁes. We take the produet
of the two expansions O

.’.:32M
) =1 o) 4 @ e DL

t..‘l"&v {2 th
eXp(—fat ) =1 — (%“’@ + (&x)2 9§ +o L (i wr ey
O ’

The independent tgﬁﬁ\i; this produet is

Qi@ e
’\:::\ ;1 _— i?)i -(%—!)2- T ok oa e — Jo(x).
The co “\:’t fen i
fchpen of i 15
:@ﬂh_iﬁi+h_ﬁﬁ—_ﬁ.“}dmm
M\:\ nl Hr+1) " 13+ 1)n+ 2)
\Sfmilarly the coefficient of 4 is
(—da)" {1 — R L ger }: (=) o) == T _a(2).
nl {n -1} L2(n-1)(n+2)
We accordingly have

el — ) = 57 i )
= Jol@) + Jy@ft — ) Ty 4 ) L
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This last result is extremely fruitful and we procecd to make deduc-
tions from if. Pulling ¢ = expif we have :
exp (i 8in 0) = Jy(@) + 25 () cos 28 -+ 2J,(z) cosdf + . . .
-+ 2i{J (=) sin b - J5(@) sin36 + ...}

Separation of the real and imaginary parts in

exp (4w sin f) = cos(® sin#) 4 sin(z sinf)

gives the two scries R
(1) cos (w sin §) = Jo(@) + 2J4(x) cos 928 -+ 2J,(z) cosdf £ . . @ \ ,
(2) sin(z sinf) = 2{J(x) sin 8 + J5(z) s sin304 .« b N

Replacing & by its complement 7 — & we have corrpspondiﬂ
(3) cos{w cos ) = Jo(w) — 2J5{x) cos 20 + 24 ( x\kﬂs 46 — )
(4) sin(z cosd) = 2{J (x) cos 8 — J5(2) cosﬁ*%‘ T}

These series are usually associabed with thf' mame of Jacobi. Any one

of the four may be regarded as a I‘ourlemenes T'wo are in cven cosines;

the others are in odd sines and odds GOSIH&S respectively. The law for
the formation of the coefficients then gives

(5) md gul) f cos Tsm\g) cos I8
\\
) )feos (& cos ) cos 2nfdB,

S

(6) ﬂJaﬂﬂ(ﬂ‘)’#f sin (z sin @) sin (27 + 1)844
s\ = (—) f sin ( cos f) cos (20 + 1)8d8.

1m if we double the recult.

In Lw}l Ease the limnits can be takm ag 0 to
(% sin 0} c08 n@ there is

If Be replaced by its supplement @ — # in eos
a change of gign if » is odd. Hence we have

(7) f "cos (2 sin ) cosnfdf = mJ Jz) (neven),
’ =0 {n odd),

similarly

[sin (2 5in6) sinndf =0 (m even),
1)
== ﬁJn(x) ('ﬂ; Odd).

{c150) 11
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It follows by addition that

®)  [eoswd — sinf)db =t () (n intogral).
0

These integrals are associated with the name of Bessel. The last of
them is of historic interest as being the starting point of Bossel’s in-
vestigations. It arose in connexion with an astronomical problem
concerning what is known as the © eceentric anomaly ”, As an&dample

of the application we have the following, A

9-2, Application to the eycloid. +40)

N\

. . ~N G
Problem 18.—4 circle of unit radius rolls on g Stedaght line, The or
pomnt of contact describes a cyeloid, E‘C;{?}’SS this in a Fowrr series,

25 .
With the origin at the initial pointiof contact, the pararietric co-

ordinates of the tracing-point are A\

z = 9——81':[1"6',2. y:: L — coséb,

The curve has a base of 25 avn(I 1s symmetrical about its middle ordinate;
the series is therefore cosines only, so that

¥ z’g‘g;f— @ COST A @y coslw |- ., ,
N
The limits for ghaze 0 to 97 and the same holds for 8. Fence
PN 9 pr .
— == — — cosB)2d6.
&, x—.\Tf:g cosna 4z ﬂ_fo o8 (nf .n sin B){1 — eos 6)%¢
:"\:§~
It ,ne'}}dins to evaluate this integral, which we shall do by nsing the

identity
P
&\ (1 —cos8) =2 —2cosfh — sin?g.
)
If we differentiate Bessel’s Jast integral with respect to # we have
fg 'Sin (18 —  5in6) sin 60 = /()

A second differentiation gives

_[:cos (n8 — @ sinB) sin2 640 — —ad,"(z).
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Mereovar,
2[ aos (nfl — @ sin §) cos 6d¢
4]
—{"eon{(n + 1)0 — @sin 6}d 4 [ eos{(n—1)0 — @ sin}d8

el @) A (@)

D po
== J o (®). N
i N
e . . D)y
The Fourier cocflicients arve therefore given by 'S\
« \J/
2 . £
Fly = 2ard p(m) — )+ md )" (n) P\ 3
4 '\'\.“
ar, : AS)
N/

a, = 2. (%)

Tf we put @ = n in Bessel’s equation we have

AOR 7, (n)+(1—~)‘f’n)—0

»

whence QX

By -—r—zJ (n).
m\\ "
The solution is complete&‘h} verifying that the mean ordinate a, 18

3/2. The requzred Fnumn' series is therefore

NS

S 2

y =7 — 2{J/( ‘csﬁm + LJ,(2) cos 2 1Jg(3)cosdz 4 . - 1
"\’?\
i»\%{" . EXERCISES

~\J .
E\fbbtai.u the recurrence formuls by differentiating the relation

o
oxp {4t — 1} = Z__wt“.f MES]
paring the coeficients of corresponding pawers

with respect to =, or i, and com
of &,

2. By modifying the variables in the above relation, prove that

oxp (batt + ) = E_o @

Replace ¢ by ¢~ and deduce (@} = I_gl=2).
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3. From the Jacobi serics deduce
1=Jya)+ 2J4(=) + 2h@y 4+ ...,
cose = Jy(w) — 2 (x} 1- 2/ ,(x) — . . . ,
| Binx = 2{J{z} — Jfz) + gy — L,

Establish corresponding results for tho hyperholic functions cosh aut sinh, By
means of one, bwo differcntiations, prove that

o= Jy(x) + 84w + BTm) > ...,
T sina = 22/,(z) — B fw) - 8T ) - L L,
$aconw = 137 () — Bylw) - BTy~ L L, p \:\'

N

NS ¢
4. Trom the Fourier sories for the eyeloid, by taking the highestuand lowcst
points, prove that N

=T @+ 33 - L 5O
F=J70) - W@+ 373 — LX)
Hence .
B2 IY) + 3IY0) + 307(5) oued
F= 10+ W+ Wl L
5. A trochoid is described by a point Wﬁcgs'e‘ distance from the centre is o,

less than the radins which s unity. X the'virvo be expressed in & Fourior series,
the lowest point being on the y axis, prowe that the coeflicient of cosna is

A\
By == ;b- Jﬂ (m)

The parametric co-ordinages N
x %‘&’— esinB, y=1—¢uosh,
[The problem on thaPeloid introduces funetions of equal order ani argument.

Considerable intergstGitaches to the theory of such functions, especially when
the order is large, MThe tonvergence of the four series mentioned in Question 4

. {\Y N 1 ‘
above iy exfraordinaril yslow. Even whon nis ag high as 50, the value of - o, ()
18 about {):O'D(\) 3.1

ST 1p
{5: Eifﬂ(:c} = ”\/{‘) cos (x ain 6} d6 — ?“-/0‘ oxp {3z cos 0) d6,
’ 2 v . 1 =
Lo{w) = _f cosh(x rin 0} d6 = _f exp (% cos U)d0.
TS L]
7. Prove that the absolute value of J, {x) is less than unity,
8. Tstablish the relation
expixcoed) = Iyfx) + 21 {x)cos O -F 2T {2)cos20 1 , ..

9. If the anode voltage in a rectifying valve is B cos et and the ourrent may he
taken as J == 4 exp (bE cos wf), prove that the mean value of the current is A7 ol6E)
and that the root mean squaro is A{I(2bEyE,
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9-3. The Poisson integral.

The function J,(z) can be defined by an integral, closely allied to
the previous forms, which sometimes bears the name of Poisson and is
otherwise Teferred to as Bessel’s second integral. Tt is established as
follows. The general, or (r 4 1)th, term in the expansion of J ,(z) 1s

(—)Ga)m
T+ r 4 I+ 1)

We propose now to multiply the expansion of cos (¢cos 8) by sinﬂﬂﬁ'aw}'
integrate termwise, % not necessarily being an integer. As growridwork

r=0 1,2 ... o

for 1his we have from the Beta functions 1-6(2) N
o : T{r 4+ PLin + %}...'\.""
527, 21 — ~N
2]0 cosr sin2@df = ___-———-—-P( R

Multiply top and bottom by I'(r + 1) and use %ﬁéﬁﬁplieaﬁon formula
1-8(1) O
T(r 4} + 125 = A/ADE +1).

Y

We then have, if r is an integer, %3 :
.w . 0 /el + PUE 1)
e aT 24 —_ —_— - "
jﬂ cos¥ 8 sin?*fdl mif" 32T +r+ U+ 1)
¢\J ] .
The (v 4 1)th term in @hREXPaHSiOH of cos {mcos f) is

po2s
—2 3""
BN/ costd, r=20,1,2 ... «

Bler+ 1)
Multiply t@Q\b’}’r gin2#@ and integrate; we geb

) .:'l'._);-mg.r £ P _ (_}f%m)zfp(n + %)\/.ﬂ--
Qrer + 13 J, o0 s 040 = G DG + )

It will be observed that this is the corresponding term of J,(x) mul-

tiplied by
T(n -+ P/ (32
We conclude that

Ly o e o
(1) J o) = T (‘f?%)\/ﬂj; cos ( cos f) sin® gdd.

This is the formula rcfez_-red to.

The integrand is unchanged if £ be
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replaced by its supplement = — 6, and we conclude that the integral
can be doubled over the half-range, so that

ir
oJ (2} o Qf cos{x cos #) sinZr@ (.
0
By using the complement 37 — @ we have alternatively

N >
(NS
'S\
- 'z N
f 008 (2 8in 8) cos2 ™

1] m’\'\',

I
J.(z) cc Zf cos (z sin #) cos2r0d{),
0
so that

R
7 m

9-4. Application o the ¢irele. \\“

Students of Fourier analysis, as performéd‘by the integral calenlus,
are usually confined to diagramsg conglabing of straight lncs, with
occasional excursions into exponentigls and parabolas. The cirdle
hever appears, and here is the explfig’:aation.

ald

Problem 19.—EBzpress the wpper half of the circle 2% -|- y? == 5* in a
Fourier series. O\

Taking the radir{s\a\s 7 I8 a mere matter of convenience: by a

change of scale 1g.kah later he made anything we like. The mean

ordinate is $2a0d since the curve is symmetrical about the ¢ axis,

the series is f&?iﬁéﬂ only. We accordingly have

\\\ ¥=17"+ a cosx +- aycos20 I ., . | .

A 2
whete) a, == | ycosnzds.
\V 70
Turning to polar co-ordinates

Z=meosl, y=msing,

we have
2

aR:_

0
ﬂ_/;r(“' 8l 6) cos (nar cos B)(—m sin d8)

ix
= .nrf cos {nr cos 8) sin2fdf.
]
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Note the change of limits when @ replaces z. The integral ig equivalent
to
. .
@, — T ,Il‘:_)ﬁr Jl(n.‘ﬂ') — E JI(’H"JT).
{nm) %
The zequired series is therefore

21-2 2 eI
y=-r + w{‘}—r%ﬁ) cosT + Jl—(znl eos 2z + J—lgr—) cosdz - ..

N\
9.5. Modification of the infegral. _ PR N

A nseful modification. of the formule can be made b}f;ﬁ‘rst trans-
posing the factor #*. We then differentiate with respect to z, taking

advantage of the formula ~\
d Y
Agd, = —z ", (W)
£ ) =)

Afterwards we replace the factor & Thik gives

o B9 [T cos6) sinf cos B8
(1) Jupfw) = TR \/1?:[623111{:5 cos ) sin® cos
{2} __GTa ‘."frsin(msinﬂ) cos2»f sin fd0,
{

= I‘(n:;—{\%)\/w

9-¢. The Lissajous ‘ﬁ}u‘e of eight.
Ag an i]]ust;g’tidﬁ of their use, consider the following variant of a
familiar prohlent.
N\
Problem20—A moving light-spot simultaneously executes the two per-
pendicular simple harmonic mobions

Y )
o\ 5 == meoswt, Y= ¢sinlwl.

It 1s required fo find the Fourier series for its path in the time -

terval 0 to 7lw.
It is well known that the point repeatedly describes a figure of
eight, one of the so-called Lissajous figures (ig. 9). The time interval
7w is & vertical period, or half 2 horizontal period. Initially z== 0=y,
=g, Finally ¢t =rmfw,y=0,8="—"7 At half-time we ha've wt =
i, #=0=y. The curveis gleew and the requisite series 18 of the
form

y=Dbysine + bysinZy + - v o
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o
f’— \"‘ T ___-—-l
(’ \‘\
[7 h ‘\‘
. * y
I “
! Ll
' 1Y
T LY
’ "
i 4
T LY
' k]
If ‘\‘
\\ O
N = TN
\. i
X !
Ll 7 S
N, (D
‘;‘ ."\\: "
i « N/
kS ",:s *
\\ ‘ ]
" 4 { hd
~ \ 4 r
O\ &\
A )
Fig. ¢.—The Lissajous figure of @t
N\
. . &
The coefficients arc given by O
~n
2 N
by == ysin nandee,
EEIN
TR Y
Put &NV
wh=0, &= 70088y = ¢sin 28, dw = —msindds.

7

The limits for 4 corresp{n&é\]ng to @ =, 0 are § = 0, I respectively,

Hence \n\
2 o e .
by =) (csin28) sin (rar cos B —ar sin 8d6)
PN
PAY

T
NV =2 f 8in (nar cos ) sin? @ cos 0.4,
O .

This @é}}atently the upper of the two forms 9-5(1). Comparison then
ives”
1 %
N g:%kmﬂﬂ@ﬁq:f%w¢
(gn) n

The requived series is accordingly

%:Mﬂ@m@ﬂ%mﬂw%q%mﬁmh...

The horizontal amplitude is changed from = to @ if # be replaced by
wEfa.
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g%, Transformation and an application to the circle.

Bessel’s second integral admits of various transformations. They
mostly amount to substitufing, in the first form # for cosf, in the
second form ¢ for sin@. In cither case we geb

15 1
(1 o) = _ G f (1 — &)+ cosat dt.
T -k g/ 2
N\
lere again the integral can be doubled over the half-range 0 to™Dk
Moreover, if we follow the same technique of first transposiﬁgfthe
factor z* and then differentiating with respect to z, we derh{e O

L 3
ol

2) Tosle) = 0 f {1 — Byt aingrie
Un + Pz ANy
As an illustration of the application we offer thc\iig]ldﬁing.
D

Problem 21.—1It is required to find tk@F’o}rEﬁr sertes for lkf? upper
half of the circle defined in polar chedrdinates by the equation 1 ==
2 sin . o0

o\

The diameter, as a matter of}:c}éﬁvenjence, is 2. The origin is on
the circumference. The Cargesian co-ordinates are
@ = 2pin2d, y = 2msind cos 6.
The curve is symn}ctﬁsal abont its middle ordinate and the required
series hence hag phe-form
A\

o= dnt @y 008 - Oy cos2e+ . - -

7\
The coe%ﬁeﬁtg are given by the rale

al
NS

'\ 2
NN g, = —f y cos R de
Frd)

e \¥j

QO

=2 f WM{“ sin 26) cos (2nm sin® B)(2m 5in2846).
avi

Further progress is facilitated by writing
cos (2nx sin?d) = €08 (nw — nw cos28)
= {—)" cos{nr COS 26).

The relation becomes

@, = 4chfj'1(-—)“ cos (nr c0s26) §in®20d0.
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'Wa now make the substitution
cos28 =4, sin20 = (1 — &)}, —2s5in20d8 = d¢,
whence
- 0
ty = —Zﬂ(—)'*f (1 — )t cosnnids.
i

Comparison then. gives

.1 1 AT po
&, = (—)PM wd ((nar) = ( )— el (7). QO
o 7 N
This can be checked against the previous circle-problem (54 ﬁhqngulﬂ
the origin. N
m<§. >

EXERCISES WV
K7,

1. From the former of the two circle- problem&e‘stabhsh the following iden-

tities: P u
= Jy{m) + $74{37) ; S b 1(57) + . .
%W = Jyfm) — %JI(Z,n\l + 348w} — .
1— 3= = J,2r) + N;{Qﬂ:) -+ 3, {6m) — .

2. An olliptic arch has a spaa}of 40 ft. and riso 18 ft. Tuaking centre line and
ground level as axes, prove ttm e Fourier series, of period 40 ft. for its cutline,
is
¥ ™o Zrx |
T Zﬂ‘“}fl(“) 008 5o -+ §J4(2x) cos Sg T e
N/
3, From thexe,k’isshjous figure of cight, deduce the identity
\Vvs
\§ 5 = Jan) — 34,85} + L,(5w) — .
4..Ji the position of & moving point is defined ab timo ¢ by the relations
\ ) &= wcoswl, ¥ -5 ¢sinlof,

prove that its path in the timo intorval O < e < 47 can be exprossed ad
Yy T 2rx 3rz
i Ja{m) co8 - 4 L7327} cos o+ 7 4(3m) cosj:- + oo

6. From the last result above, deduce tho identities:
Y=y BB+ By 4 L
= J2m) - LI yfbm) + L7010 = L. L,
= Joldm) £ B,(8m) + 34002 4 L. L
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g, Multipty the identity ¢0s20=1—2 ain? § by cos (z cos ) and infegrate from
2
0 to . thus dedueing Jy 4 Jy= ;JI. Treat similarly cos 48 =1 — 8 sin®8

-+ 8sin?{. Hence deduce generally that Jg, is expressible in tezms of Jy, J5, . . .
o

nr
7. Establish the relations

I (x)== { 2d)" }fhcoah {x sin 0} cos™0 40
0

T+ Bve
== { }fiﬁcosh{x cos 0} sin®™0d9
. e
= { }f (1 — 3"t cosh twdi, .si\
0 ”,

9-8. Application of Lommel infegrals. R4

We now transfer our attention to instances where Bessel functions
figure in the integrand. The cases of Fresnel inegrals and Lommel
integrals were both mentioned carlicr in thg{bé?k; but 23 no applica-
tion of the latter has yet been studied, ipis.&esimble to fill the lacuna.
This is best done by an example in heat conduction.

If ¢ be the temperafure ab any point, we have from 8-4(1)
Lo (00 B4 120

por\ orJeN o2 L 2ofr «x ot
o\ .
If we can regard ¢ ,‘@d‘cpe,ndcnt of z and 8, the conduction takes
place radially and Wg%ve

N '\N ) .ai;b. ].; .a(_zs =] p_s .aé.
AN 2 ror kO
7\
Assuming\fot a falling temperature that ¢ has the form R exp (—mt),
where‘lf i8 a function of r alone, we have solutions of the type
e psm

O & — (AT fr) + BYofhrl}e ™, K="

K

Problem 22.—A solid bar of radius ¢ radiates into @ med'ia.a-m' at zero
temperature.  Assuming that the temperature in the bwr 1S e-na_fei’m‘
dent of the awial distance and of the azimuthal angle, 1 15 required (o
examine the variation in temperalure distribution with time.

Discarding the ¥ funetion because the bar is solid, we adopt solu-

tiong of the type
b = AT o(krle™.
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For the emissivity we have the surface condition

k¢+x§—o, rec,

whence
R yffkc) + el (k) = 0,
or,
, ‘? .n
1) Tke) + pIfle) =0, p=—". >
()

The roots of this equation fix the permissible values of %, {ahd thenee

m. If we build up a serics solution N

¢ = ZA,J (ky7) exp(—mt), “‘\\

the presumption is that initially the tcmper."ai{lge distributien is given
by R

(2) do = (1) = Zdplofheyr).

il‘he problem poses two questighs at this stage. Tirstly, whether an
a'rbltrary function f(r) can necesgarily be expressed in a series of fune-
tions of the type Jy(ks) where'the %, are assigned. We assume that it
can, leaving the pure mathematicians to argue about the conditions of
1s validity. Secondly; how the coefficients A, are to he determined;

here we assume the Icgitimacy of terrawise integration and we ufilize
Lomme)’s integrgxlg.w‘(}onsider the relation 4-6(1)

N
£y
(a® — ﬁ%{}}rJo(ar)Jo( Br)dr = o{ BT (ac)]y (Be) — ady (ac)lo(Be)}.
‘\...’
Rai .
The :m,g\ht side is zero if o, B are two values of % determined from (1).
”I\t:fﬁf;lows that we have f(r) expressed In a series of orthogonal funetions,
\31)& if we multiply (2) by #7,(%,#) and integrato, we have
4, fo T W o F ) dr = 0, = v,

Turning to the companion relation 4-6(3)

fo r 2(lor)dr = 1T ¥ke) ++ T ()}

= 361 + p*W(ke),
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we conclude that

J:) c-:_‘f (W (k) dr = 4, j; "1 o2y dr
= 1421 + P Hkse)

The muthod of determining the coefficients is analogous to that em-
ployed in Fourier analysis. Once the equation for &, has been solved,
A, may be considered as known. Whether one counld perform the in: £
fegration on the left in any particular case is another matter. Further |
illustrations will be found in H. 8. Caxslaw, The Conduction of Hent,)
Chap. VIL : O

-
NN
< 3

9-9. Lipschitz’s integral. L0
The number of known integrable expressiong\jvolving Bessel
functions in the integrand is already somewhat.expensive and there
ate acrretions almost every year. Most of’st{h’em require complex
analysis for their establishment; but thergaaze two exceptions which
we will now give. The first is due to Lipschitz. As groundwork we
require two clementary integrals. N
(i) Treating [ coshaeds symbelivally, we have
~ T 1
,;j B {:'(is&i\m = 6-—N-f)jg cos b

_ 8—{&{!} D, A\ \\ ) b . e—am
= (;]-c @) cos by = g
R\ ¢

It follows that {*@};ﬁ]ﬁe infinite integral we have

(b sinbx — a cos bx).

5_2

\’\\M" - —ad& :':——a—--
jﬂ e~ popbrde T

fii)'"j’fowe write
} dt d(tant)
Jorgon—@ETm+aw
— 1 - tan~? [—a—t'@t—‘ }’
= W)i (af* + b“)*

we have the definite integral

& at L m ~
fo at 4 7 costt | 2a(a? - 8%
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Taking Bessel’s first integral, (‘oupled with a change in the order of
integration, we have

ki

et} o 2 . . .,
fo e~ fy(br)dr = fn e oy _ jo cos (bx cost)di

2 pit o
= f dﬁfo €% cos (b costhdn
T

. N\
‘Efaf di
. N
70 a? L 5% cos?t oA\
T &
: O
= T _2% i # x‘
@+ ) N
)

EXERCISES /
\\

1. Prove {w.
1
f Jolba)d — E’«"f Jolwydr = 1.

2. Multiply the expansion of J E):’:J xby e~ and infegeato termwise, vsing the
relation 1-§ Ex. 1, \

L\g‘ ety = o),

Hence establish Llpschifzss integral.
3. leferentla,te .tﬁefmiegra,l with respect to » and deduce

.\.“,_ - 5
o f O B de = .
.§~ 0
Tra.nspose\he factor & and differentiato sgain, utilizing the relation
. "\
\}" - T g — — ().

-Establish that for » intogral

© (YT + )
L e (brja"dy = -‘-\/T:(T—l—be)i_@‘

A% 22(26)"T'(n - 3/2)
Jo el = 5 s g

Let a tend to zero. Is this legitimate ¥
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g-10. Sonixc’s integral-

Soninc's first linite integral is readily established by the method
previously =wuployed for Bessel’s first integral. We propose &0 multiply
the cxpausion of J ,(z sin 6) by (sin 8)*+}{cosb) 2+l gnd integrate term-
wise, The (7 -|- 1)th term in the @XpADSICN 18

G gy,

Tn+r+ W+ 1)

<0 that tho essential part of the integral is a Beta function and expres-,
sible in {jamma [unctions. We have A\

g jr%,r(ﬁiu yenr2ri (oos )2+ 46 == T(n 47+ VPG L1 -~

TG 47+ m Jah

The reason for taking (» 4 1) as the index of sin # nogwappears.. It pro-
duces the factor D(n 47 + 1) which cancels with the gorr‘{aspondmg
{actor in the denominator. The net result of t}Q pitegration 13

(—)thaltTem
T + )l + 7 Jeae F2)

Inspeotion shows that if this were,ljfjtil%iplied by
gL

T(m + 1)

k™
we shonld have the (r vh\t)th term of Jpamer(®@)- We conclude that

i ;WJ o sin B){sin gy+{cos )%™+ 0.

1) oy Gy e
(1) s +1(\£’)\“ 9P + 1)70

oY EXERCISES
\- Trove that the validity of the result s not
and #n. Why is it nocessary to gtipulste that m, #

ting n = —2 and zeplacing m by # — 1.
2, "'ransform the integral by the gubs

gmtl 1 1 @yanitde
Jn+m+1(i~'»‘) = Wm j‘; BE: }

o~
confined to integral values of m
- _1% 'Try the effect of put-

titution sinf = ¢ and deduce

- 3, Deduce
flJn(xt}tdt = ().
O
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Hence by differentiation prove that
f T — A
a
Generalize by showing that Sonine’s integral satisfios the relation
T EI ) = e, (),

4. Evaluate the integral

N
{4
Jolk)(e? — atyirda, e &
0 <\
'S\
5. Bhow that the equation D
1 z"."
f _e08% o O °
o (I — ¢t { ¢
"
is satisfied when  is any zero of J,, Y
S : o\
9-11. Weber’s discontinuous integrals. <!

If we give an imaginary value to a i Lipschitz’s integral we have
o Q‘ o
[ ey y(bo) dp SN2 — a2,
0 ™Y
The left side is complex: hut thghtight side is either quite real or pure
maginary, according as b is{reater or less than a. liquating the real
and imaginary parts we l\m}e

f{} Jq(b\;,}cosaxdx =0, a>0b

o~ = ~at b>a
i"\:.:x Ju(b$) 8in ards — (aﬂ . bQ)—i‘, @b
"{\ . = 0; b = .

Thigis known as Weber’s discontinuous integral; it is a fair sample of
o N/ . . . .
whiole hierarchy of discontinuous integrals,

Integrating the first form with respect to o from a = p to ¢ =g,
we have

j{; Ju(bx}wdx =0, (p=b, 7= b).
x
Hence the integral

‘/0‘ Jo{b,rj Sl}:laf_fi: dfl:(:la Sa}r)

L
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is independent of ¢, provided a > b. Tt remains to sce whether Iisa
fanction of &, Substitute ez = £; then

i sin b

J—={ Jofct) — dt, ¢=—

[ ol = -
This shows that I is a function of ¢ only; bub seeing that 1t is not a
function-of e, it is not a function of b either. We determine its value

by letting b tend to zero, with J,(0) = 1. We then have
I — S.’}il—t- = %7?- 7 '\:\
o ¢ A\

Tneidentally there are at least fourteen independent proofs of\this lasb

relation. We conclude that (if e > 5 RS,
o sinaz 5 _ 1 \ :
jo To(b) —— 00 == 23N\

W

al has found app]ica;tiéné in the theory of poten-

tial. Sonine’s integral and its near relations appear in some of Ray-

leigh’s work, whilst Weber's integral, Was ased in an investigaflon of

the electrostatic potential of & charged disc. In the me_hin, genera:hza-

tions lead to the hypergeouiet *> function, and possibly associated
\

Legendre funetions.

Lipschitz’s integr

+ 3

&

N

9-192. Fourier-Bedsel series.
The t; "\O‘f serics which we gagsumed I 9-8(2) as the exp.ansio.n q.f
an athbitfary function is known as 8 Fou.ricr-Besslel expansion; _11; 13
a greafsband-by in apphied problems where & series expansion 18 re-
qnij‘e?i. All the functions are of the same order, not necessarily zetd
in our case, and the arguments aré determined from some equation

of condition that permits the use of T.ommel integrals. We take 1o

general
fle)y= AlJﬂ(I‘W) + AaJﬂU@m} et

Multiply each side by a A{e®) and integrate from 0 t0 C. We have

4-6(1)
{a® — ‘Bg)ch-Jﬂ(am)Jn(ﬁm)dx = c{ﬁJﬂ(ac)

(G160}

J . (Be) — O’Jﬂ’(ac)Jn(Bc)}-

12
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The right side is zezo if o, 8 are values of & determined from
(1) S alke}) =0,
(ii) J,(ke) =0,
(1) PRJ,/(ke) 4+ QF (ke) =0,
ﬁrhere P, @ are constants. The first of these was used by Fcavier when

# 18 zero. The extension to other orders was made by Lomirsl; andghe
third condition, which we employed in problem 9-8(1), i usually

associated with the name of Dini. R,
The cocfficients are then determined from the second pfljonmel’s
integrals N
< n? '\\ 3
[ g amydn = 32| (1 — "LNT 500y T ac) |
0 et & |

AN .
which takes different forms according to the’€ype of boundary condi-
tion employed. For example, if the first of he above condiiions holds

we have "

f cmf (@) (ko) d %:%4 €2 k).
0 O

It has to be admitted that{relz:tively few functions give compactly
integrable forms. An ob}?{itﬁ}s exception comes from

.’,Eﬂ'+1
s =2, ko)
& .
This shows tl{#it\if f(x) is 2™ and we write

P\ 27 = Ay o) + Al (bz) + . .

we have)
o :"\,;' cﬂ+1
Q7 Tanlkd) = 37,%Re),  Tulhe) =0,

In virtue of the recurrence relation

kol o (k) = ] (o) — Rond . (Ret),
we have
cn—-l .

As — _2‘ el
R

and the series for 27 is thus determined over a range {} to e
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9-13. The polynomial,

T+ is sometimes an advantage to have all arguments the same and
to aliow the order of the function to vary. We accordingly consider he
possibility of an expansion of the fype

AT (@) + Afy(e) - Al @) 4+ s

Tn tiis connexion we can utilize the Jacobi serics to give an expansion
for 2 and hence for a polynomial. For brevity we put 2 coshi=e.
The trigonometry books then state that L)\

903 = ot — 2. 2cos38=cF— 35,
4nd in gencral : 7\
PR

(n—3) ., nn—3@5) .
W) e T SRAS b

2 3t

A\

We can write the Jacohi series as 3-1(1) -\

cos e = J(z) — Tof@)(@ — 2) + SNt — 4 +2) — -

sinlae = J,(x)o — Jo{@)(P — 38 oF J()(ed — 6% 4 5o} — . - .

; #
% cosnf =P —nem -

ft; side in powers of z¢, we can compare

If in both cases we expand thele
In this way we derive,

the coefficients of corresgﬁnding powers of ¢,
for the first three powers

1‘;\‘10(:1:) + 2 g(m) + 2@y s
S G = J4(o) + 3T5(@) + BT + -
DT = Tyw) + A + )

It can'})ekicft as an exercise for the reader to sbow that in general

e ’j‘:; & 2 — 1y
O (o =, M}‘—“,ﬂ’——’ T nsasl).

/AN

Q

9-14. Schlomileh expansion.

n of almost any vibration problem shows the occasional
uniform order, the argument being proportional
This means that we scek an expansion of the

Inspectio
necessity for a series of
to the rank of the term.

form
fla) = ag + ayd o) + ado{22) + . o v



172 APPLIED BESSEL FUNCTIONS
Tf this were possible, we should have at the origin
f0) —ag = Efan.
We should also have by differentiation
— (@) = aJ (&) + 2] ((2%) 4 Bayd ((32) -]-

Presuming that we requirc this to be valid over the range 0 << 285,
we substitute # == ¢ siné; the limits for 8 are then 0 to §m. I eNlow

propose to integrate termwise the expansion ) \\‘\
J1(ne sinf) = {{ne) sin @ — (dne )38‘L —|—(1nc) T %n\f?—xd— Cee s
\:"’:\irﬁ .
The general, or rth term is, apart {rom sign, \4
N
o, {sin@¥y
(dnoyrr L)
INGITERY
Asg part of the integration we have“,}t;ﬁ{?ﬁ
L < ::‘ F ¥
2-_[0 sm?”—iﬁdﬁzz Bir, 1y = ( A% l)
: &K
The integral of our §{§xﬁ term is thus
Ko (Fneyt | Tin'w
&7 TOre T 6+
AN
The duplication formula gives 1-3(1)
K
"\ 22 T(r + 1T 4 1) == 4/20(2r + 1).
\fhe 1ntegra1 of our general term becomes

' (re2

@nl °
Hence

L : ne  {ne)® | (nc)
fu Jl(ncsmn?)dB:?!__. _41__|_. S

__ 1 —cosne

e



RESSEL CORTFICIENTS., INTEGRALS AND EXPANSIONS 173

Reverting to the series for f'(x) we have

I — cose 1 —cos2c

A
-—fﬂ Flesin6)dd = ay + a, F .oy
¢ ¢

which is better written
Fle) = {ay — f(0)} + @y cose @z co826 . . v

where
Floy=c[ f'esin6)ds. QO
1] £
2N
Treating this as a Fourier series, we derive the coefficients 3&(\\""'

1= 9 N\
ap—f(0) =~ fu Fle)do, on=" fu Fle) geRiibe
\\:

The series for f(x) may now be considered as kh\dw;h, at least formally.
Tt is cvident that in practice the difficulties, Will arise from the inte-
grations connected with F(c). As an inst n6e of a soluble case we may
consider the parabolic form f(z) == 328 \Fhis gives flz) =,

. Ay
Flo)=c¢ g;‘t‘*?'“*i“ fdf = ¢,

17, 28N 2 4
= TRde="_"Sg, == [ Eoosnede = (—1)" —,
o frfn ¢ \"2{ " “.’T‘/i; ) H
2 Q) iy s
Jat = DI @) — 3o22) + $uf5) = - - §e
valid in the :zﬁpée
D> 0 <z <<



CHAPTER X

Allied Functions

10-1. Functions of the third kind. ~
It was suggested by Nielsen that in honour of Hankel the gymbol
H should be used to denote the function J, -:¢¥,. We agf uﬁﬁnﬂl}

have the somewhat cumbrous notation >
(1) HO@) = J @) +i¥,(), HO) = J @), .

These being linear combinations of J,, and ¥, ate ’n’éce%mril\» solutions
of Bessel's cquations of order n. They accordingly satisfy exacily the
same recarrence formule as J, and Y, (H%DVeI‘, ginee Y, was do-
fined by means of J,, it follows that ad¥ bhe of J,, Y, II, niust be
expressible as a linear combination oRshe other two. There iz the
further relation connecting any twoSolutions of the same equatiorn.

The H fanctions find their cliief apphcatlon in the theory of the
subject. The assessment of thglr importance in practice is probuably
largely subjective. The standard work by Gray, Mathews and Mac-
Robert does not even, me}ltlon them; but they cccasionally appear
in Rayleigh’s work, &Q}i they are fairly freely used in Carslaw, Mathe-
matical Theory of the Conduction of Heas. They are readﬂy calenlable
from tables of J“and Y ., and tables of orders 0, 1, § are given in Watzon,
Theory of Bessel Functions.

~

O

"\
10-2., Kelvin’s functions,

-~ jl’ht,r(, are a round seore or so of functions closely allied to Bessel

\£met10ns Tor the most part their interest is mathematical; but

outstanding exceptions are the ber and bei functions and their con-

geners. They play an important part in alternating current theory;

they have also been used in the two-dimensional motion of a viscous
Liquid.

The equation for Iy(z) is
i“y Jley
2 tdt

174
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Pui ¢ = 2{4)! and the equation becomes

\; &y | 1 dy B
{1} '.l:_dm_z T i s ¥= 0,

with the solutions To(ae/4) and Ky(zy/t). The ber and bei funetions are
defined as follows. Sinee :

I =1+ e+ P
0 2 {2!)2 LR |
we have real and imaginary parts in L\
C g Gat G O
IU(WQ') = {] -— Ei‘)? EI:I)_Q PRI '.: ‘.;‘:

o GaP , G ol
rifger — B+ T N
(2) — herx -+ ¢ heiz. R4
The names are convenicnt abbreviations(for” Bessel-real and Bessel-
imaginary. Both ber # and bel arevpu"xely real for real », and it is
easily shown that both serics are absolitely convergent for all values
of #. Among the more obvious p,p’qpeirtics we have

3) her 0E=1, bei 0=0,
O .
(4) f;x be:rxda;:\} bei'z, . fo # beindy = —wber'z,

the latter pair }Jefﬁ\g"xest-ab]ished from the series. The graphs of both
funetions osqilla)}é'(ﬁg. 10). The functions ker and kei are similarly

defined fro@w‘ _
(5)\..”53 _ Ky(zn/4) = kerz + @ keiz,

/"

ahd dthere is yet another pair, her and hei, defined from Hankel’s
fiunction. It can be left to the reader to prove that the four functions
‘ber, bei, ker and kei are the solutions of the fourth order differential
equation
{59 — 22 + My =0
The application of the method of Frobenins then shows that the roots
of the indieial equation are 7 = 0,022 It follows that there Is a
solution beginning with #%; this is ber z. The second solution for the
zero index certainly contains a Jogarithmic term; this is ker z. Simi-
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larly the second solution for the index 2 cerﬁainly_ containg a logarithmie
term; thisis kei z. Finally, in accordance with theory, the first solution
corresponding to the index 2 may or may not contain a logarithmie
term. It happens that it does not, and fthe solution iz bel @ All the
functions have been generalized for order and argument. Those which
have been mentioned are of zero order, in which cage it 13 customary
to omit the suffix dencting this.

1 ber x

e %

>4
.‘.,\
P 3

\\Fi';;. te~NMarch of berx and beix

N

10-3. Current ii\is:trfhution in a conductor,

Probabiy he simplest application is to the current distribution
over & e:(};bsa-section of a conductor. The argument i based on the
two _gircwital theorems of Ampére and Faraday. Let If be the .mag-
netie intensity at distance 7 from the axis of a conductor of radius ¢.

,\The work done in cartying unit pole round the circle of radius 7 18
N/W =2mrH. For a circle of radius r + dr we have IV +- dw. The

dliﬁereme dW tallies with 4+ times the current through the annulus.
ence

d
A (2mrH)dr = 47(2nr dr)o,
s
whete o is the variable current density. Thus

14 . P
Py (rH) = 4ne  and 19 l; aﬂ} — 4 7

ror\ ot at



ALLIED FUNCTIONS 177

Taking » longitudinal section of unit length, the annulus provides two
rectangles meastring 1 by dr. The magnetic induction through one of
these is pHdr. Taking the upper rectangle only, the potential drop
along the lower edge is £ = po, where p is the resistivity. For the
upper edge we have similarly E 4 dE, and for the line integral round
the rectangle we have

oE do oH
— iy =—pdr= dr,
or ! P H%
N
where w is the permeability. The elimination of H gives R
EE{T%]z@Q{ A2
ror| or p Ot A
Presuming that the alternating current density is gm\fQ by
. fo AN
o = R expi(wt + ¢}, 5, =%
ot \\
we have 1 E {rp %I_?’] — %ﬁ_{l@: h =9,
rdr | dr B
2R 1dR  apo Ampien
: athe 10N R0, B=——-
o et rdr R

"I'he solution is evidently

, Q%x\o{bcr () & 5 bei (b)),
(' heing some arbitrary constant.
o shows that the current is not neces-
irection, since the functions ber and
site sigos, according to the value of
large, the current density vector

which remains fintte on the axis,
Consideration of the phase of
garily everyw(hére in the same d
bei may a'of the same or oppo
kr; inffaet, if w and accordingly % is
maytvevolve more than once.
~\:\If o, denote the current density at the surface, we have

0, 0¢ Ofbex (kc) -+ ¢ bei (k)

the time periodicity factor being understood. The total current through

a cirele of radius 7 18

f “gmordr = 270 Ji Gl ber (k) dlfr) - ilr bei () (k)]
0 k2 Jo

= Q_Trg [kr{bei' {fry — i ber’ (kr}}].

i
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If we denote this by P, and let ¢ denote the corresponding «juantity
for the whole cross-section, we have

P2 (-?‘)2 bei’2 (k) + ber'2(%r)
ol=

1f o,, denote the mean current density we have

¢/ bei(ke) + ber’?(kc)

) 20 If . r
Oy = :;—2 =7 {bei’ (ke) — 4 ber’ (ke)}. A
Tt follows that the constant C may be considered known il gi \ﬂl\er\oc
or o, is known. It is customary to write >

oep = QIR 4+ iwl),

77
< R

v

and call R the equivalent or effective resistance, "B the internal self-
inductance, L the effective reactance. Wh at-e\jQ( ‘they may be called,
we have ¢*¢

B ior — o benti) Qi)
2ae ber’ (k) < 2 bet’ (ke)

The importance of the a.bsolqte:*&:'a,llle of the ratio P/Q lies in its
ability to account for the ** skin“efect ”, whereby at high freguencies
the current tends to desert tt\e gentre of the conductor. As no adequate
explanation ean be given mithout the use of asympthotic expansions we
postpone the matters Mhe various types of function have heen fre-
quently calculated .and they are usually published in the British
Association Reports”

N

&
104 Asypktﬁtic expansions,

As dhesc have several times been mentioned in the contse of the
boolk ibis as well that a word should be said on the matter. 1t is usnally
ilﬁpcirtant to know how a function behaves for large values of the
argument, espeeially if tabulation is in view. Tabulation ig a tecdious
business anyway, and a formula that will give an approximate result
is invaluable, especially if at the same time it gives an indication of
the magnitude of the error. The series expansion of a function may be
perfectly valid for all values of the argument, and yet useless for
purposes of computation on account of its slow convergence.

The obvious suggestion for a way out of the difficulty is to expand
the function in powers of %, so that as @ gets large the terms get
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sinull. The answer is that such an expansion is not necessarily valid.
A £motion that is defined by a differential equation is very much tied
in it permissible ways of expression. The reader is probably already
faxniliar with asymptotic formule; thus (14 n~1)7 is asymptotic
to ¢. An asymptotic series is something different. In spite of the fact
thab a valid infinite serics in descending powers of the variable possibly
Joes not exist for some given function, it may still be possible by some
means to obtain such an expansion formally. The  means * is almost
invariably a contour integral using the complex variable z = & g,
and the resulting expansion is divergent. All the same we can alWays
say that the function equals the first # terms plus a remainder;“the
remainder being defined at worst as the difference between, the function
snd the sum of the first # terms, Tiverything depends on thig Temainder,
whose value is & function of # and the variable. If§tican be shown
that, for a fixed n, B tends o zero as the variableduncreases, then the
first # terms constitute the asymptotic expans;ieg;of the function, and
R gives the magnitude of the exror. R&

An outstandingly good example of anAgymptotic series is provided
by the error function. ‘An integration by-parts gives

e e

Jeran=3f w‘*‘f?‘?‘f"% —— %S

Making this definite we have
ne
AN et o et
gy = b —f 24
fn% cdr 2 jx 7

and more gen{ré,ﬁy

NV g—at —t # o
" e e 7
"‘\ f =g — &t D[ oom®

Asi'éf)’e.ated apﬁlication of the last formula gives us

g e[y 1 18 1.3.0 }
fe d”;:ﬂ_x'{ T T R

Inspection shows that for any value of  that may be considered lzu.'ge,
say 10, the magnitude of the terms decreages with unusual rapidity.
Frrther inspection shows that, no matter how large « may be, the
rmmerators will ultimately overtake the denominators and the terms

increasing beyond all bounds. The geries

will then be on their way to
if pursued is divergent; but if we examine the end of the sequence op
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stopping at the th term we find that, apart from tho factor N (=),
we finish up with

e Ir — 3) 1
Yy Eed TR
The integral repays examination. The factor e+ steadily decreases
throughoust the range, showing that the integral must be less than

W _m‘.‘i ]'\ . 1 ‘\

. 1y —z® —2r Jor — ¢ . (1 2)
T(r+ Y[ atrdo = i O
NS ©

The integral remainder is thus secn to be less than our rth term. The
comforting fact emerges that, if we decide to approximatbby stopping
at the #th term, the error is smaller in magnitude tharithe last term
retained, Putting it into fignres, if » is as low ag@and we decide to
retain only two terms, we can bank on the crrox being below ¢#/108,
which is of the order 10- ¢ Comparing this.;.{\’-'ihj the alternative pro-
cedure of cxpanding e—** and integraling tgkmwise, the latter is evi-
dently out of the running, It only remains’to add that, if we ealculate
Erf (z) rather than Erfc(x) we have ¢\°

2 ) N ’ a
_aﬁd — —gt e Nt — 1 —s MN
foe = fue da’s‘“ L.e du = Ia/w jxe dit
)
10-5. Solution by ﬂeﬁn}t} 'integrals.

Back in Chapten I we mentioned the matter of solving diffcrential
equations by ]egﬁs of definite integrals. We shall now give an ele-
mentary expasifion of this rather highbrow method by applying it to
a convenientform of Bessel's equation and eventually linking up with
the a-syii}ptotie expansions. ‘We propose to examince our chances of
solving

V) d  Zntldy
d.;)2+ %% y—O,

which is the equation for @—C,(z), by means of the integral
y=[Tomi

Here T is a function of ¢ alone, and tho integral is eventually to be
made definite, thus becoming a function of z alone.
Whenever we attempt to solve an equation by using an integral,
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much naturally depends on choosing a suitable integrand; here of
colrse it is experience that counts. The above integrand may be con-
sidereil reasonable on the grounds that the cylinder functions behave
very much like trigonometrical functions for large values of z.

This substitution poses two problems, both of which are answered
in the working. Firstly, what is to be the precise form of T'; sceondly,
what aze to be the limits of integration. In the meantime we have by

differentiation and partial integration : ~
- imi int N o
yr:[Ti—:l—fT'g_—dt, . A\
w i S

dy — 13 dat
o —faTte dt,

@ = —thzemdt

piwt A "; ? gtrt
= — 2. 27t T - dt.
[z09] + ferGrun
Putting these in the equation, we, hz’wE with a little rearrangement

[T(1 — )] — f (20— ) -+ (20 — 1)78ketstdt = 0.

The first term, in the, shi\lare bracket, is presumed to be takejn at the
two limits of integration, which arc not yet known. The obvicus way
of satisfying thel tdentity is to make both the square bracket and 1Ehe
curly bra.ckqt\x’raﬁsh geparately. To accomplish the latter means solving

a small d]’,&gr(' ‘ntial equation and we get

N \ _j: — (n — 1_)":, P=(1— 12yt
<\{ o/ g 1 — 2
This fixes the form of T and one of the two problems is a-nsv‘vered. Ih-e
square bracket obviously vanishes for £ = +1; and p.rowded.m is &
positive real, it tends to zero also as ¢ approaches 1 + ¢%0. This puts
us in possession of the two golutions

1 1L
%1 :f_-leimt(}_ —.iz)“—*dt, s ::]; il — tﬂ)"—*dt, |

It remains to intefpret these,



£82 APPLIED BESSEL FUNKCTTONS

Coneerning the former, it fails to converge at either limit unless
n > —L. Otherwise, if we substitute = sin ! we have

ir
2-f cos {z sin §) cos?*df = y, = 0, (x).
]

Apart from an irrelevant numerical factor, we have evidently reached
J{x) as defined by Bessel’s second integral.

10-6. The asymptotic solution. O

. 7N ’
The second solution is more interesting, if for no reason gy than
its being complex and se providing two solutions by its réad nd ima-

L 3

ginary parts. For positive real ¢ we put P §

t=1+%, &= m,hﬂz—@@#ﬂ,
& €T WNY x

so that the limits for v are 0 and «. We jc];e)lfha.ve-

- R w\|"tidy
Ya :-/0 EXP(1'$—U)[—:;(:\-)‘+E)} -7

W

or

J ”'

2\ W }“4
-2, — ¢ N —ely( 1 - = dv.
& ( “a:‘).'-[u { ( r 2'}:)

Since A
Y
-.-a\ﬁ_. 018 (—3m) = exp(—Lim),

we can write the niultiplier of the integral as
p X \’ ARG ] )
R Q)em@~m+l%}

As fop@e ‘Integrand, we can expand by the binomial and integrate
termmise. The interesting fact presents itself, that if » is half ap ) odd
J\rrﬁéger {a phrase that by this time has a familiar ring about it). the

\bmomlal expansion terminates and the resnlt is aohleved in {inite
terms. Testing this out for » == 1, we have

=z}

— 2y = —2x 1 (2) = expi(a: — %w)j; evdp

L)

2. .
= — {sinx — 1 cosx).
x

Apart from irrelevant numerical factors, thesc evidently give J, or
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If 5 is not the half of an odd integer, we have the real part of the
integral as

21(2z)?
2 1 2 9
gyl e }
(n+ ?){- Siaap ¢
= Pl'(n + %) N\
Simitazly for the imaginary part we have L\
o 1 A B — & O\
[ e o l_(“?*_ D, _—Re—de—D ‘}du
5 %% 31(22)? N
2 _ 1 9 1vfn®_ Bypl_ 28 O
RPN (Ve S Cisbuak o ik 7, bt ¥ S }
(n -)[ % 31(22)? >
— Q@ + . K7
\\

The I? and € serics are asymptotic. If puriied they ultimately diverge;
bt since they were derived from the bigeniizl theorem, they ean always
Lo cut short with a remainder. Ifthis was anything more than an
clementary exposition we should Pe under the moral obligation of
investigating that remainder i piit we will waive the point.

It we multiply —2¥%2 byl (o) [/ ml(n + 1) and pick out the real
and imaginary parts, W@M}e the asymptotic formule

b 3
(1) {ﬂ,(‘r‘] = (%) (P cos B — @ sin ),

:’\"' ) i
@ O - (Z)weing + Quesfh

]
S

where,_% \\
.‘.\’ 3
N3y B=z—3nT By,
It is readily verfi
# is half an odd integer.

ed that these give the nsual formule exactly when

10-7. The modified functions. '
Qeeing that Bessel’s equation was previously modified by writing
42 for =, we have z-»f, and z7"K, as golutions of

&y  mAldy

— = 0.
dx? x dx Y



134 APPLIED BESSEL FUNCTIONS

Hence also the integral y = f o
is & solution, provided that
[Tl — &)= + f 1R — 1) — (@20 — DTt}dt =0,

The square bracket is zero when =1, —1 and tends to zero as ?
tends to infinity. We therefore examine the integral

y=[ e —itd, 1=145
@
—- * Y L 7 \n_ﬁdﬂ \\,
._fo exp(—x—v)b(%T;)J = Y,
o o\ nth oo o v n—% . m'\'\,"
Qy=¢ (E) fue [?}(l—kﬁ)} do O

2 N SR I NN ek 1 i Y ]
=° (E) P(“H){H ].!(893)_—5",\ 21(Bz)2 —tee

Je know that ya® must be a linpai”éombination of I, and K,,; but
as I, tends to infinity with # we\ ponclude that it is not present here.
After re-arranging some factqfs we have the asymptotic formula

(1) K. (@) :&;(35)%8;[1 4 4_?;:27(8;.13)12 N ]

This can be cheqkeh\}or the value = 4.
The corresp\oi)&iug formula for [, is
' e { _dmr—12 \
i@y

9y IO - Y
0= oy
O
Thgifﬁymptotic formulse for the ber and bei functions of general order
a:i;é'ra.ther fearsome affairs. Fven those for zero order are not very
Walluring. We give them here without commenting further; they can
be deduced from the asymptotic formula for Io(x).

'

. é .
bers = -— gosa, belx = — ——8iha,
£/ (2} A/ (Brw)
e T 1
V2 8 8y T
x ]
p= -

'\E é’\/" D
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Adverting to the glin effect mentioned in 10-3 we have by defi-
niticn
Iy keit) = berkx + 4 beike,

Diflerentiating with respect to z, we have in absolute values
| 71(kzi¥) [ =] bel’ ke — 4 bor'ka |

since the absolute value of % is unity. The real part of % is 271 and
on using the asymptotic value of I we have /\

P (.?- :
o= exp — (r —¢) ’ \,
0 \/2 \
Tor any fixed values of v and ¢ the exponent is negative, 80 §

ahd ¢

increasing & the absolute value { P/Q | tends to zero, even W
are guite close,

N
'\(/
X
O
N
s:\ N
&Y
™ "
N\ %©
(N
t"il\\
¢ &\J
N
N\
£ )
"‘V N
P ¢
8
¢ ',\M
NV
\O
O

3
{a 150} '
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A fow words on bibliography and the problems mav bo of interast.
For the most part the problems are obvions| ¥ the commusn vroperty
of the mathematical world. 4 few may be original, bt 1 .ake no
claim to that. For one thing, the claim is seaveely woith naking;
for another, I should risk being non-suited. They eame when bidden,
possibly from the recesses of memory, in which case thev - &heir
anceatry behind, O\

Take, for example, the transverse vibrations of o n Wdiform
rod.  Anvhody conversant with the literature of the sulhees knows
that it was origmally tackled by Kirehhoff. Tt m@&ém again by
J. W. Nicholson and it appeared m Proc. Roy. Spd)xeiii 4 1917).
Five years later the same journal published Mdother acconat by
D. Wrinch in Vol. 101 (1922). O

Stmdlarly Bernoulli’s chain problem wag/fodified by Greeniill, as
stated in the text. The matier wag inyt%tiga.tcd experinentaily by
J. R. Airey who gave his results in PED Mag. (68) xxi, 1911, ». 736.
He adds withdut proof that the uniferm chain with end load is goluble
in terms of J and ¥ of orders 0, 132} and he states correctly that the
problem figures in Routh, A@a&ziéed Rigid Dynamics. Tt also fignres
as No. 32 in the miscellangpus' examples at the end of Gray’s treatise
raentioned below, "

Tae lengthening a‘édﬁlum} which I regard as an ontstandingly
good illustration, ﬁgtges in the last-mentioned sonrce as No, 19 and
the authors quote Lecornu in the Comptes Rendus of 15th January,
1894, Thig I ainpretty sore I first mact in a record of a conversation
between Eig@:}fn and Max Planck, but 1 have failed to trace it. The
upshot ig,\Khat if anyone feels agerieved at having their material pressed
into my'gcrvice, I hasten to assure them that it was done inadvertently
and.I8Am prepared to make reasonable amends.  And now for the
b’o(}ké, to all of which T am indebted.

N\ 1. Watson: Theory of Bessel Functions,

This impeceable and exhaustive treatise is the standard text for
mathematicians in English. Tt containg ninety pages of tables, a tong
bibliography, and not graph in all its cight, hundred odd pages.

2. Gray, Mathews and MacRobert: A Treatise on Bessel Functions
and thewr Applications to Physics,

134
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This well-known work contains fifty pages of tables, a bibliography,
a graph and a large collection of miscellaneous examples. The subject
is ireated by contour integrals with more rigour than herein; the
applications take np half the book and are more advanced than mine,

3. Riemann: Pastielle Differentiolgleichungen.

One of the world’s most delightful mathematical books; some-
times known as Riemann-Weber, To those familiar with the oldeR
edition, the latest issue looks like vandalism.

4. E. B. Wilson: Advanced Calculus. O

This miniatnre cneyelopedia is invaluable to those wishing to
mprove on the caleulus of their student years. I am indehted to the
author for stabilizing my belief that the Tecurrence fopiulie made a
suitable approach and that solution by integrals, leg@\g\ to the asymp-
rotic formulse, was feasible by elemenfary mean®\Y

A, Jahnke und Kmde: Funfiioneniafeln pz?&\ﬁommln und Kurven,

The reputation of this book has grown steadily and deservedly over
the last thirty years. It is now procuvable printed in English and
Germian on opposite pages. It conthins an unparalleled amount of
information on tabulated functiogs;*logether with excellent graphs.
It ghould be in the possession\of all who meditate applications of
liigher mathematics. o~

6. Prescott: Apphed-Blasticity. .

This gives the nedesgary analysis and the discussion of such of our
problems as depenghon the theory of elasticity. Its form is more easily
agsimmilable than(the standard work by Love. It also treats the in-
stahility of t']\é Jeep girder,

7. Cag\Strength of Materials. _

Thigis“useful for the ordinary theory of beams and struts, and it
gives the theory of the instability of the deep cantilever.
~ 8?' Carslaw: Conduction of Heat. _

"The ori ginal work was later ssued in two volumes, ‘the first dealing
with Fourier serics and the second with heat conduction. The latter

gives the applications of Bessel funetions.

9. Lamb: ydrodimamics. o )
This standard work gives several applications of Bessel functions

1o fluid motion.

10. Rayleigh: Theory of Sound.
Most of the vibration problems will be found treated at greater

length there,
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